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Biological Neuron Models: Levels of Abstraction

http://en.wikipedia.org/wiki/Myelin_sheath_gap
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The Nernst-Planck-Poisson System
describes ion drift through a static solvent.

Nernst-Planck:
∂ni

∂t
−∇ · Fi = 0 (conservation of charge)

with the ion flux Fi = Di (∇ni + zini∇φ)

Poisson: ∇ · (ε∇φ) = −e2n∗

ε0kT

∑
i

zini

• For ion species i :
• ni : relative concentration (with respect to scaling concentration n∗)
• zi : valence (± 1)
• Di : (position-dependent) diffusion coefficient

• φ: relative electric potential energy with respect to the thermal
energy (φ = e

kT U with U in Volts)
• ε: (position-dependent) relative permittivity
• T : temperature of the solvent
• e, ε0, k : natural constants
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Assumptions of a reduced model: Single Axon

http://courses.washington.edu/psy222/psy222actionpotential.htm

• 3 ion species: Na+, K+, Cl−

• homogeneous intra- and extracellular medium: water
• membrane thickness: 5 nm
• No ions inside the membrane⇒ Additional boundary conditions at

membrane interfaces representing ion channels
• In a first approximation, an axon is a cylinder

Assume rotational symmetry⇒ Reduction to 2D problem!
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Special Part: Membrane

Membrane dynamics are taken from Hodgkin-Huxley model with a one
voltage dependent one (voltage-independent) leak channel for each
cation (Na+, K+)
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The Hodgkin-Huxley System

For each channel type C:
IC = gC [φ] gC : conductance, [φ] : membrane potential

gKv = ¯gKv n4

gNav = ¯gNav m3h

with maximum conductances ¯gKv , ¯gNav and gating particles
n,m,h ∈ [0 1], following time- and voltage-dependent kinetics

dn
dt

= αn(φ)(1− n)− βn(φ)n

dm
dt

= αm(φ)(1−m)− βm(φ)m

dh
dt

= αn(φ)(1− h)− βh(φ)h
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Computational Domain / Boundary Conditions
Multidomain setup / Dimension reduction
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Computational Domain
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Distance from membrane: ∼ 10 nm 10 nm-10 µm 10 µm-10 mm

• Debye length needs to be resolved close to the membrane
(Debye length << membrane thickness⇒ electrolytes are
electrically decoupled)

• Grid is highly anisotropic
(dx = 100 µm,dymin = 0.5 nm, factor 200,000)
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Implementation in DUNE

Grid:

• 2D Tensor grid
• Sequential: UGGrid
• Parallel: YaspGrid + GeometryGrid
• Test stage: Tensor-YaspGrid

• Multiple domains: MultidomainGrid

Discretization:

• Heidelberg⇒ PDELab

Used modules: Core modules, dune-multidomaingrid,
dune-multidomain, dune-pdelab
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Numerical methods

• Linear Finite Elements (Continuous Galerkin)

• Time stepping: Implicit Euler

• PDE system is solved fully-coupled (Newton’s method with line
search)⇒ significantly higher time step!

• ODE system for HH kinetics (membrane flux) is solved separately
(implicit Euler), once at the beginning of each time step

• linear solvers (ISTL):
• direct solver (SuperLU)
• BiCGStab + ILUn preconditioner
• Restarted GMRes + AMG preconditioner (ILU smoother)
• In parallel: Use overlapping versions of the above solvers
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Intracellular potential
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LFP signals for increasing distance from the
membrane
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Adding myelin to the axon

• Myelin serves as an insulating layer around the axon⇒ faster
conduction

• Areas between myelin sheats are called nodes of Ranvier
• Action ptential is “refreshed” at nodes by membrane currents
• “Saltatory conduction” from node to node
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Adding myelin to the axon

?−→ How to get the new
geometry into the existing

setup?

• Myelin serves as an insulating layer around the axon⇒ faster
conduction

• Areas between myelin sheats are called nodes of Ranvier
• Action ptential is “refreshed” at nodes by membrane currents
• “Saltatory conduction” from node to node

14 Jurgis Pods | Electrodiffusion Simulations of Neurons and Extracellular Space



How to get the new geometry into the existing setup?

Precondition: I want to keep my beloved tensor grid!

• One could explicitly include the myelin sheath

• ... but we would have to resolve the Debye layer twice!
• A vertical part of the membrane appears, how to handle that?
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How to get the new geometry into the existing setup?

Observation: Potential is approximately a linear function over the
membrane
⇒ A membrane with permittivity ε = 2 and thickness d = 5 nm will
cause the same potential decay than one with ε = 4 and d = 10 nm

εw = 80 εm = 2 εw = 80

−65 mV

0 mV

d = 5 nm

φ

x

εw = 80 εm = 4 εw = 80

−65 mV

0 mV

d = 10 nm

φ

x

C = εw
εm

is the factor by which the potential gradient changes
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How to get the new geometry into the existing setup?
Idea: Do not include node geometry explicitly, but calculate effective
permittivities for a “collapsed” myelin sheath!

• Membrane: Thickness dnode = 5 nm, permittivity εnode = 2
• Myelin: Thickness dmyelin = 500 nm, permittivity εmyelin = 6
⇒ Effective permittivity εeff

myelin = εmyelin
dnode
dmyelin

= 0.06

collapse

Node: ε = 2 Myelin: ε = 0.06
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Grid for the myelinated axon

• Length of a node of Ranvier: 1 µm
• Length of the axon: 10 mm
• Equidistant spacing in x-direction not possible anymore
• Finer resolution at nodes of Ranvier and transitions to myelin,

coarser spacing at myelin sheath

⇒ Strongly varying grid sizes in both x- and y-direction
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Intracellular potential

Propagation is faster!
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Equilibrium State
Varying permittivities⇒ different membrane potentials
⇒ “comb-shaped” equilibrium concentration profile
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Extracellular potential near membrane (nodes of
Ranvier)
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pot_nearfield_nodes.avi
Media File (video/avi)



Extracellular potential near membrane (myelin)
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pot_nearfield_myelin.avi
Media File (video/avi)



Extracellular concentrations near membrane (myelin +
nodes)
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conc_na.avi
Media File (video/avi)



Comparison with an effective model: Line Source
Approximation (LSA)

Pettersen & Einevoll 2009

Potential of one line segment:

Φ(r ,h) =
ρI

4π∆s
log

∣∣∣∣∣
√

h2 + r2 − h√
l2 + r2 − l

∣∣∣∣∣
• ρ: resistivity of the extracellular

medium
• I: Total membrane current of line

segment
• ∆s: length of line segment
• r : radial distance from the line
• h: longitudinal distance from the end

of the line
• l = ∆s + h: distance from the start of

the line

24 Jurgis Pods | Electrodiffusion Simulations of Neurons and Extracellular Space



LFP signals for increasing distance from the
membrane
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Summary

• Electrodiffusion simulations of the brain using
Poisson-Nernst-Planck equations

• Usage of a stacked meta grid hierarchy
(YaspGrid in a GeometryGrid in a MultidomainGrid)

• Parallelization with custom overlapping partitioning
(YLoadBalance) on a low number of processors p ≤ 10

• 3D results, but only 2D cost by exploiting cylinder symmetry
• Results generally show deviations from effective LSA model for

both unmyelinated and myelinated axon, good agreement at
nodes of Ranvier
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Outlook

Next steps:

• Improve the modeling of the intra- and extracellular medium, i.e.
effective diffusion coefficients and permittivities

• Run larger simulations of myelinated axon
• larger domain
• finer resolution (remove spurious oscillations, check grid

convergence)

• Improve effective LSA model: Include AP echo as an additional
term into the equation
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Thank you for your attention!
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