
Dune Interface Change Request
Generalizing intersections for non-manifold grids

Oliver Sander

October 2, 2015

This text documents a request to change an interface in the dune-grid

module. It is intended to describe the new interface with as much precision
as possible. If the proposal is accepted, the document will be the reference
on all syntactical and semantical questions.

Contents

1 Problem statement

In the following we call the d− 1-dimensional faces of a d-dimensional element facets.

The current grid interface makes the implicit assumption that at each point of the
interior of an element facet, the element either intersects with one other element, or
the point is on the domain boundary. As a consequence, configurations as the one in
Figure 1 are not explicitly catered for.

However, such configurations are useful in various situations.

e1

e2

e3

Figure 1: Grid with T-junction

1



l1

e1

e2

Figure 2: Ambiguous case occurring in a dune-grid-glue coupling between a 1d grid
consisting of a single element, and a 2d triangle grid. Strictly speaking,
the line element l1 intersects two triangle elements, viz. e1 and e2, but this
cannot be represented by the current intersection concept.

1.1 Network grids

Both one- and two-dimensional networks with fairly general topology appear as do-
mains for PDEs in various applications. Examples are:

• 1d: Network flow and diffusion problems; with applications in geology, modeling
of traffic and supply chains, neuroscience, root networks, etc.

• 2d: flows and transport in rock fracture networks, mechanics of closed-cell foams,
etc.

In such networks, three or more lines may meet in a single point (1d networks), and
three or more two-dimensional sheets may meet in a common line (2d networks).

Grids are needed for finite element and finite volume methods on such network do-
mains. The FoamGrid grid manager1 is an implementation of the Dune grid interface
for network grids.

1.2 dune-grid-glue

A closely related problem concerns dune-grid-glue. There, intersections are a central
concept. However, compared to the intersections from the Dune grid interface, the
intersections in dune-grid-glue are generalized in two aspects:

1. Intersections relate elements from two different grids.

2. The two elements may have different dimensions, and the intersection need not
have codimension 1 in either grid.

This generalized intersection concept works very nicely in many situations. However,
in certain situations the concept is not general enough. The following example makes
this more concrete: Suppose a two-dimensional triangle grid is to be coupled to a one-
dimensional grid embedded in the triangle grid. In such a situation, an element of the

1users.dune-project.org/projects/dune-foamgrid

2



1d grid may intersect the edge between two triangles in more than one point (Figure 2).
In other words it has a non-zero (relative to its own topology) intersection with either
of the two triangles. This intersection must be represented by an Intersection object,
of which the 1d element is the inside element. But which of the two triangles is the
outside element? Currently there can be only one outside element, but picking one
instead of the other is arbitrary.

2 Status quo

While there is no explicit support in the Dune grid interface for network grids, such
grids can nevertheless be implemented in Dune by violating an assumption of the
interface. This is what the current FoamGrid implementation does. The grid inter-
face makes the unwritten assumption that for all intersections of a given element e,
the corresponding geometries-in-inside form a nonoverlapping partition of the element
boundary, modulo sets of measure zero.
FoamGrid currently violates this assumption. Instead, on the grid of Figure 1 and

element e1, the intersection iterator will stop four times. Of the four intersections,
two are with the boundary. The other two are with elements e2 and e3, respectively.
These two have identical geometries-in-inside.

Advantages: Implementing FoamGrid in this way, without explicit changes to the
grid interface, has several advantages:

• No interface changes

• An important concept of the Dune grid interface is retained: an intersection
relates two elements (see Appendix ?? for a possible alternative to this).

• Allows to handle nonconforming situations such as the one in Figure ?? without
having to artificially split intersections.

• It is possible to reach all neighbors of a given element with a single loop.

Disadvantages:

• There is no way to find out which intersections “belong together”.

• In situations as the one in Figure 2, functions on the 1d element frequently
appear as singular source terms for the 2d grid. However, in analogy to FoamGrid,
dune-grid-glue currently does produce two intersections (one for each triangle).
This implies that the source term will actually be added twice.

• The grid test for FoamGrid fails: it tests for each affine element whether the
integrationOuterNormals of all intersections sum up to zero. This property is
not true for the configuration in Figure 1: the normals for the non-boundary
edge are added twice.

3



• What is worse: the test cannot be fixed. Natural fixes would be to either scale the
normal at each integration point with the number of intersections at this point,
or to integrate only over a subset of all intersections. However, the required
information is not available.

3 Proposed changes

We propose the following changes to the Dune grid interface. There are both seman-
tical changes and changes to one interface method signature.

3.1 Semantic changes

We propose that the following rules shall be part of the Dune grid interface:

Rule 1 For any two intersections of a given element, the geometry-in-insides are ei-
ther disjoint or identical.

Consequences:

• For each intersection, there is a well-defined number that says how many inter-
sections of the element have the same geometry-in-inside as that intersection.
Expressed differently: there is a well-defined number that says how many neigh-
bors the element has across a given intersection.

• For non-conforming situations like the one in Figure ??, the intersection that
relates e1 and e2 must be broken into two parts, to be consistent with the inter-
section for {e1, e3}.

The following two rules allow to find out which intersections belong to a common
geometry-in-inside.

Rule 2 If an intersection between two elements is split up into several parts, then the
intersection iterator shall traverse them consecutively.

Rule 3 If more than one neighbor is reachable over a common geometry-in-inside,
then all intersections for this geometry-in-inside shall be traversed consecutively.

The following two rules should be rather obvious, but we state them anyway for
precision.

Rule 4 If an element has two intersections that share a common geometry-in-inside,
then neither of them is a boundary intersection.

Rule 5 If an element has two intersections that share a common geometry-in-inside,
then the two respective outside elements are not the same.

4



3.2 Changes to the Intersection interface class

Only a single method is to be changed.

3.2.1 Neighbor

Change the signature of the Intersection :: neighbor method from

bool neighbor () const;

to

std :: size t neighbor () const;

The current version returns true if the inside element has a neighbor across the in-
tersection, or, in other words, if there is a valid outside element. The new version
should return the number of different outside elements across intersections that share
the current geometry-in-inside.

3.3 Discussion

All changes are fully backward compatible. In particular, the change to the neighbor

method is backward-compatible: Users of grids without multiple intersections will start
to receive 1 and 0 instead of true and false, which is no problem because 1 and 0 are
automatically cast to the correct boolean values.

Advantages:

• No backward-incompatible changes

• Important interface concept retained: an intersection object still relates exactly
two elements.

• All neighbors of an element can be visited in a single loop.

• The test whether integrationOuterNormals of affine elements sum up to zero can
be fixed: while integrating, simply scale each normal with 1/max{1, neighbors()}.

A Appendix: Alternative approach

There is a second approach to solve the same problem. This approach was discussed
for a while, and then discarded in favor of the approach presented above. It is left in
this appendix for the curious reader.

5



e1

e2

e3

Figure 3: Grid with nonconforming T-junction. Suppose e1 is the inside element. With
the current grid interface, a hypothetical nonconforming network grid man-
ager could represent this situation by two intersections {e1, e2} and {e1, e3},
where the geometry-in-inside fo {e1, e3} is a true subset of the one for
{e1, e2}. When allowing intersections to relate more than two elements,
then this configuration must be represented by two intersections {e1, e2}
and {e1, e2, e3}.

A.1 Semantic changes

Rule 6 Intersections cease to be objects that relate pairs of elements. Rather, they
now become objects that relate groups of elements.

• Each intersection still has only one intersectionInInside. This implies that non-
conforming configurations as the one in Figure ??, can only be handled by using
two intersections for the common edge.

• There is more than one outside element, each with corresponding geometry-
InOutside and indexInOutside

A.2 Changes to the Intersection interface class

A.2.1 Neighbor

Change the signature of the neighbor method from

bool neighbor () const

to

std :: size t neighbor () const

The current version returns true if the inside element has a neighbor across the inter-
section, or, in other words, if there is a valid outside element. The new version should
return the number of outside elements.

6



A.2.2 Outside

Change the signature of the outside method from

Entity outside () const

to

Entity outside (std :: size t i=0) const

Rather than returning the unique outside element, the method now returns the i-th
outside element.

A.2.3 geometryInOutside

Change the signature of the geometryInOutside method from

LocalGeometry geometryInOutside () const

to

LocalGeometry geometryInOutside (std::size t i=0) const

Rather than returning the unique geometry of the intersection in the outside element,
the method now returns the geometry of the intersection in the i-th outside element.

A.2.4 indexInOutside

Change the signature of the geometryInOutside method from

int indexInOutside () const

to

int indexInOutside (std:: size t i=0) const

Rather than returning the unique index of the intersection in the outside element, the
method now returns the index of the intersection in the i-th outside element.

A.3 Discussion

The changes to the neighbor method is fully backward compatible. Users of grids
without multiple intersections will start to receive 1 and 0 instead of true and false,
which is no problem because 1 and 0 are automatically cast to the correct boolean
values.

Also, the changes to the outside method (etc.) is fully backward compatible. In grids
without multiple intersections, at most the 0-th outside element will be available. The
default parameter ensures that this intersection will be returned when the method is
called without argument.

7



Advantages:

• Retain the rule that the geometries-in-inside must form a disjoint partition of
the element boundary (modulo zero-sets).

• Fully backward-compatible. No existing code needs to be changed.

Disadvantages:

• To iterate over all outside elements, two nested loops are needed, instead of only
one.

8


	Problem statement
	Network grids
	dune-grid-glue

	Status quo
	Proposed changes
	Semantic changes


