Dune Core Modules (2.5.2)

fmatrixev.hh
Go to the documentation of this file.
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3#ifndef DUNE_FMATRIXEIGENVALUES_HH
4#define DUNE_FMATRIXEIGENVALUES_HH
5
10#include <iostream>
11#include <cmath>
12#include <cassert>
13
17
18namespace Dune {
19
25 namespace FMatrixHelp {
26
27 // defined in fmatrixev.cc
28 extern void eigenValuesLapackCall(
29 const char* jobz, const char* uplo, const long
30 int* n, double* a, const long int* lda, double* w,
31 double* work, const long int* lwork, long int* info);
32
33 extern void eigenValuesNonsymLapackCall(
34 const char* jobvl, const char* jobvr, const long
35 int* n, double* a, const long int* lda, double* wr, double* wi, double* vl,
36 const long int* ldvl, double* vr, const long int* ldvr, double* work,
37 const long int* lwork, const long int* info);
38
44 template <typename K>
45 static void eigenValues(const FieldMatrix<K, 1, 1>& matrix,
46 FieldVector<K, 1>& eigenvalues)
47 {
48 eigenvalues[0] = matrix[0][0];
49 }
50
56 template <typename K>
57 static void eigenValues(const FieldMatrix<K, 2, 2>& matrix,
58 FieldVector<K, 2>& eigenvalues)
59 {
60 const K detM = matrix[0][0] * matrix[1][1] - matrix[1][0] * matrix[0][1];
61 const K p = 0.5 * (matrix[0][0] + matrix [1][1]);
62 K q = p * p - detM;
63 if( q < 0 && q > -1e-14 ) q = 0;
64 if (q < 0)
65 {
66 std::cout << matrix << std::endl;
67 // Complex eigenvalues are either caused by non-symmetric matrices or by round-off errors
68 DUNE_THROW(MathError, "Complex eigenvalue detected (which this implementation cannot handle).");
69 }
70
71 // get square root
72 q = std :: sqrt(q);
73
74 // store eigenvalues in ascending order
75 eigenvalues[0] = p - q;
76 eigenvalues[1] = p + q;
77 }
78
91 template <typename K>
92 static void eigenValues(const FieldMatrix<K, 3, 3>& matrix,
93 FieldVector<K, 3>& eigenvalues)
94 {
95 K p1 = matrix[0][1]*matrix[0][1] + matrix[0][2]*matrix[0][2] + matrix[1][2]*matrix[1][2];
96
97 if (p1 <= 1e-8)
98 {
99 // A is diagonal.
100 eigenvalues[0] = matrix[0][0];
101 eigenvalues[1] = matrix[1][1];
102 eigenvalues[2] = matrix[2][2];
103 }
104 else
105 {
106 // q = trace(A)/3
107 K q = 0;
108 for (int i=0; i<3; i++)
109 q += matrix[i][i]/3.0;
110
111 K p2 = (matrix[0][0] - q)*(matrix[0][0] - q) + (matrix[1][1] - q)*(matrix[1][1] - q) + (matrix[2][2] - q)*(matrix[2][2] - q) + 2 * p1;
112 K p = std::sqrt(p2 / 6);
113 // B = (1 / p) * (A - q * I); // I is the identity matrix
115 for (int i=0; i<3; i++)
116 for (int j=0; j<3; j++)
117 B[i][j] = (1/p) * (matrix[i][j] - q*(i==j));
118
119 K r = B.determinant() / 2.0;
120
121 // In exact arithmetic for a symmetric matrix -1 <= r <= 1
122 // but computation error can leave it slightly outside this range.
123 K phi;
124 if (r <= -1)
125 phi = M_PI / 3.0;
126 else if (r >= 1)
127 phi = 0;
128 else
129 phi = std::acos(r) / 3;
130
131 // the eigenvalues satisfy eig[2] <= eig[1] <= eig[0]
132 eigenvalues[2] = q + 2 * p * cos(phi);
133 eigenvalues[0] = q + 2 * p * cos(phi + (2*M_PI/3));
134 eigenvalues[1] = 3 * q - eigenvalues[0] - eigenvalues[2]; // since trace(matrix) = eig1 + eig2 + eig3
135 }
136 }
137
145 template <int dim, typename K>
146 static void eigenValues(const FieldMatrix<K, dim, dim>& matrix,
147 FieldVector<K, dim>& eigenvalues)
148 {
149 {
150 const long int N = dim ;
151 const char jobz = 'n'; // only calculate eigenvalues
152 const char uplo = 'u'; // use upper triangular matrix
153
154 // length of matrix vector
155 const long int w = N * N ;
156
157 // matrix to put into dsyev
158 double matrixVector[dim * dim];
159
160 // copy matrix
161 int row = 0;
162 for(int i=0; i<dim; ++i)
163 {
164 for(int j=0; j<dim; ++j, ++row)
165 {
166 matrixVector[ row ] = matrix[ i ][ j ];
167 }
168 }
169
170 // working memory
171 double workSpace[dim * dim];
172
173 // return value information
174 long int info = 0;
175
176 // call LAPACK routine (see fmatrixev.cc)
177 eigenValuesLapackCall(&jobz, &uplo, &N, &matrixVector[0], &N,
178 &eigenvalues[0], &workSpace[0], &w, &info);
179
180 if( info != 0 )
181 {
182 std::cerr << "For matrix " << matrix << " eigenvalue calculation failed! " << std::endl;
183 DUNE_THROW(InvalidStateException,"eigenValues: Eigenvalue calculation failed!");
184 }
185 }
186 }
194 template <int dim, typename K, class C>
196 FieldVector<C, dim>& eigenValues)
197 {
198 {
199 const long int N = dim ;
200 const char jobvl = 'n';
201 const char jobvr = 'n';
202
203 // matrix to put into dgeev
204 double matrixVector[dim * dim];
205
206 // copy matrix
207 int row = 0;
208 for(int i=0; i<dim; ++i)
209 {
210 for(int j=0; j<dim; ++j, ++row)
211 {
212 matrixVector[ row ] = matrix[ i ][ j ];
213 }
214 }
215
216 // working memory
217 double eigenR[dim];
218 double eigenI[dim];
219 double work[3*dim];
220
221 // return value information
222 long int info = 0;
223 long int lwork = 3*dim;
224
225 // call LAPACK routine (see fmatrixev_ext.cc)
226 eigenValuesNonsymLapackCall(&jobvl, &jobvr, &N, &matrixVector[0], &N,
227 &eigenR[0], &eigenI[0], 0, &N, 0, &N, &work[0],
228 &lwork, &info);
229
230 if( info != 0 )
231 {
232 std::cerr << "For matrix " << matrix << " eigenvalue calculation failed! " << std::endl;
233 DUNE_THROW(InvalidStateException,"eigenValues: Eigenvalue calculation failed!");
234 }
235 for (int i=0; i<N; ++i) {
236 eigenValues[i].real = eigenR[i];
237 eigenValues[i].imag = eigenI[i];
238 }
239 }
240
241 }
242
243 } // end namespace FMatrixHelp
244
247} // end namespace Dune
248#endif
field_type determinant() const
calculates the determinant of this matrix
A dense n x m matrix.
Definition: fmatrix.hh:68
vector space out of a tensor product of fields.
Definition: fvector.hh:93
Default exception if a function was called while the object is not in a valid state for that function...
Definition: exceptions.hh:279
Default exception class for mathematical errors.
Definition: exceptions.hh:239
A few common exception classes.
Implements a matrix constructed from a given type representing a field and compile-time given number ...
static void eigenValuesNonSym(const FieldMatrix< K, dim, dim > &matrix, FieldVector< C, dim > &eigenValues)
calculates the eigenvalues of a symmetric field matrix
Definition: fmatrixev.hh:195
static void eigenValues(const FieldMatrix< K, 1, 1 > &matrix, FieldVector< K, 1 > &eigenvalues)
calculates the eigenvalues of a symmetric field matrix
Definition: fmatrixev.hh:45
Implements a vector constructed from a given type representing a field and a compile-time given size.
#define DUNE_THROW(E, m)
Definition: exceptions.hh:216
Dune namespace.
Definition: alignment.hh:11
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Sep 26, 22:29, 2024)