
Implementing Local and Temporary Refinements

in Dune

J. Fahlke

6th February 2006

1 Introduction

Refinement is a subsystem of Dune[1] which allows for local and temporary
refinements of arbitrary grid entities without having to modify the grid or the
entity itself. This allows to interpolate nonlinear functions into linear pieces.

It can also be used to partition entities of one geometry type into subentities
of another geometry type, e. g. quadrilaterals into triangles. This is useful if we
want to write a grid and associated data into a file, but the file format can only
deal with one geometry type.

2 Design of the Interface

2.1 Terminology

Entity: An entity is an arbitrary polytope which is a member of a grid. It may
have the same dimension as the grid itself or any lower dimension.

Element: An element is an entity of the same dimension as the grid it belongs
to.

Vertex: A vertex is an entity of dimension 0 (a point).

Codimension: Let dG be the dimension of a grid and de the dimension of one
of its entities. The codimension ce of that entity is defined as ce := dG−de.
That means that the codimension of a vertex equals the dimension of its
grid, while the codimension of an element is alway 0.

Subentity: When we refine an entity, we can view it as a grid consisting of
smaller entities of the same or lower dimension. To distinguish these
smaller entities from those who belong to a full-fledged grid, we call then
subentities. Subentities also have a codimension: let de be the dimension
of the refined entity and ds be the dimension of one of its subentities, than
cs := de − ds is the codimension of the subentity.

Subelement: A subelement is a subentity with a codimension of 0. It has the
same dimension as the entity it refines.

Subvertex: A subvertex is a subentity with a dimension of 0. Its codimension
equals the dimension of the entity it refines.

1



The prefix “sub-” may be omitted when it is clear that we are talking about
subentities instead of entities.

2.2 General Considerations

What data do we need to refine an entity, and what data do we want back?
We want the subelements. That means: how many subelements are there,

what are their indices within the refined entity, and what are their corners.
That leads to the next topic: we want the subvertices. That means: how many
subvertices are there, and what are their indices and positions within the refined
entity.

To get this data, we need the geometry type of the entity we want to refine
and the geometry type of the entities we want back. Of course, we need the
dimension of the entities as well. We will do the refining on Dunes reference
elements, so this is all the information we need about the entity to be refined.
Finally, we need to know the refinement level, that is, how fine the subentities
should be.

There is one addition: each grid in Dune may have its own C++ type for its
coordinates. We pass that to Refinement as well, so it can do the calculation
with the same precision as the grid itself.

2.3 class Refinement

We chose an interface somewhat similar to the grid interface in Dune, so our
users don’t have to learn totally new concepts. The class Refinement has meth-
ods to count the number of subelements and the number of vertices on a given
refinement level. It also contains iterators which iterate over the subelements
and subvertices of the refinement.

But that is where the similarity ends. There is no support for subentities
other than subelements and subvertices. class Refinement needs no information
about itself at runtime, so it contains only static methods and we can’t actually
create instances of it.

Listing 1 shows the interface of class Refinement. To make compiler opti-
misation possible, it gets the geometry type and the dimension of the refined
entity, the geometry type of its subelements and the coordinate type as template
parameters. The only runtime parameter is the refinement level.

2.3.1 The Iterators

We decided to deviate from the usual scheme of an iterator in one respect: the
iterators are not dereferenceable. Instead, you get the information by directly
calling methods of the iterator (see listing 2). The reason is that the subentities
do not actually exist as data within the grid; everything can be calculated on the
fly while incrementing the iterator. The solution to maintain an entity object
within the iterator and return a reference to that is non-satisfactory, since we
have no control over the lifetime of that reference.

2



template<NewGeometryType::BasicType geometryType,
class CoordType,
NewGeometryType::BasicType coerceTo,
int dimension>

class Refinement
{
public:
enum { dimension };

template<int codimension>
struct Codim {
class SubEntityIterator;

};
typedef Codim<dimension>::SubEntityIterator VertexIterator;
typedef Codim<0>::SubEntityIterator ElementIterator;

typedef FieldVector<int, nCorners> IndexVector;
typedef FieldVector<CoordType, dimension> CoordVector;

static int nVertices(int level);
static VertexIterator vBegin(int level);
static VertexIterator vEnd(int level);

static int nElements(int level);
static ElementIterator eBegin(int level);
static ElementIterator eEnd(int level);

}

Listing 1: The interface of class Refinement.

2.4 class VirtualRefinement

class Refinement needs to know the geometry types of the entities and subele-
ments as compile time, which can make it cumbersome to use if the grid which
is refined contains elements of more than one geometry type. To make this
easier we created class VirtualRefinement which defines the interface for a set of
wrapper classes. Each wrapper provides the functionality of one corresponding
class Refinement with the interface of class VirtualRefinement.

The advantage is that our users can treat all VirtualRefinement classes the
same, so they only have to write their code once. The disadvantages are that
the class is no longer static and it is now decided at runtime which object is
called, so the compiler cannot inline these methods. Of course, Refinement was
developed with disk-based input/output in mind, which is slow anyway, so there
is not much lost.

Listing 3 shows the interface of class VirtualRefinement. As can be seen it
still has the template parameters class CoordType and int dimension. It does
not make sense to make the coordinate type selectable at runtime. As for the
dimension: the user most probably knows it at compile time, and it enables us
to use fixed-size vectors for the coordinates.

3



template<NewGeometryType::BasicType geometryType,
class CoordType,
NewGeometryType::BasicType coerceTo,
int dimension>

class VertexIterator
{
public:
typedef Refinement;

int index() const;
Refinement::CoordVector coords() const;

};

template<NewGeometryType::BasicType geometryType,
class CoordType,
NewGeometryType::BasicType coerceTo,
int dimension>

class ElementIterator
{
public:
typedef Refinement;

int index() const;
// This is a FieldVector for Refinements iterators
// but a std::vector for VitualRefinements iterators
Refinement::IndexVector vertexIndices() const;

}

Listing 2: The interface for the iterators of class Refinement and class

VirtualRefinement. In addition to what is shown here, these iterators can do
all the usual things iterators can do, except dereferencing.

2.4.1 The Iterators

The interface of the iterators (see listing 2) is the same as for the iterators of class
Refinement. There is one thing to note though: class Refinements IndexVector is
an instance of Dunes FieldVector, while class VirtualRefinements IndexVector is
an instance of std::vector.

2.5 buildRefinement()

The VirtualRefinement wrapper template class still has the geometry type of the
refined entity and its subelements as template parameters. Moreover, each class
is a singleton since only one instance of it is ever needed.

buildRefinement() is used to actually get an instance of any of the wrapper
classes. It receives the geometry type of the refined entity and the subelements
as runtime arguments and makes a big switch statement to select the right
wrapper class. The interface of buildRefinement() is in listing 4.

4



template<int dimension, class CoordType>
class VirtualRefinement
{
public:
template<int codimension>
struct Codim {
class SubEntityIterator;

};
typedef Codim<dimension>::SubEntityIterator VertexIterator;
typedef Codim<0>::SubEntityIterator ElementIterator;

typedef std::vector<int> IndexVector;
typedef FieldVector<CoordType, dimension> CoordVector;

virtual int nVertices(int level) const;
VertexIterator vBegin(int level) const;
VertexIterator vEnd(int level) const;
virtual int nElements(int level) const;
ElementIterator eBegin(int level) const;
ElementIterator eEnd(int level) const;

};

Listing 3: The interface of class VirtualRefinement.

template<int dimension, class CoordType>
VirtualRefinement<dimension, CoordType> &
buildRefinement(NewGeometryType geometryType,

NewGeometryType coerceTo);

template<int dimension, class CoordType>
VirtualRefinement<dimension, CoordType> &
buildRefinement(NewGeometryType::BasicType geometryType,

NewGeometryType::BasicType coerceTo);

Listing 4: The interface of buildRefinement().

3 Extending Refinement

3.1 Namespace Layout

To separate Refinement from the rest of Dune, we kept most of its implemen-
tation within its own namespace Dune::RefinementImp. In addition to separate
implementations for different geometry types from each other, each implementa-
tion keeps its details within its own subnamespace below Dune::RefinementImp.
We put the class Refinement itself, however, and the whole of VirtualRefinement
and buildRefinement() into namespace Dune itself for easy access.

5



3.2 File and Directory Layout

When we chose the directory layout the focus was again on separating the
implementations for different geometry types from each other and not to clutter
the rest of Dune with files that nobody will use directly anyway.

For the former, we put each implementation into its own file, named after the
implementation. All these files have to include the file base.cc, which defines
class Refinement, so they can properly specialise that class. Our users will usu-
ally include refinement.hh when using the static part of Refinement, so that file
includes all the implementation files. VirtualRefinement and buildRefinement()
don’t contain much that needs to be extended when adding a new implementa-
tion, so we put them both together in one single file virtualrefinement.cc.
We split the declarations for class VirtualRefinement and buildRefinement out
into virtualrefinement.hh.

As to the second goal, we put the files which are important to the user,
namely refinement.cc and virtualrefinement.hh as well as virtualrefine-
ment.cc into the directory dune/geometry, and the files containing implemen-
tation details into the subdirectory dune/geometry/refinement.

3.3 Writing a new Refinement Implementation

The process of writing a new Refinement implementation, consists of creating a
new file named after the supported geometry types and preferably putting it in
dune/geometry/refinement. This file should specialise class Refinement1 for
the template parameters geometryType and coerceTo and probably dimension.
Implementation details like the iterators should be kept in a subnamespace
below namespace Dune::RefinementImp named after the implementation. Then
an #include statement for the new file has to be added to refinement.hh.

To make the new implementation known to buildRefinement(), the new com-
bination of geometry types has to be added to buildRefinement()s back end,
RefinementBuilder::build() in virtualrefinement.cc. If the new implemen-
tation supports only a limited number of dimensions, class RefinementBuilder
needs to be specialised for those dimensions.

4 Existing Refinement Implementations

4.1 Refinement of Hypercubes

We implemented refinement of hypercubes by simply using the SGrid available
in Dune as a back end. For each dimension of hypercube refinement requested,
an SGrid is created in a singleton wrapper class. It is then refined to the
requested refinement level using SGrids globalRefine(). If a higher refinement
level it requested later, the grid is simply re-refined to the new level.

The advantage of this approach is that it is very simple to do. One no-
table disadvantage is that the CoordType template parameter is misleading –
internally SGrids coordinate type (currently double) is used.

1All the current implementations use a struct Dune::RefinementImp::Traits to map from

geometryType, coerceTo and dimension to the matching Refinement implementation. This is

no longer necessary since Dune switched to the dimension-independent geometry types simplex

and cube and class Refinement can now be specialised directly.

6



Figure 1: Kuhn triangulation in three dimensions.

4.2 Refinement of Simplices

We had to implement this from scratch. The implementation is described in
detail in the section 5.

4.3 Triangulation of Hypercubes into Simplices

We implemented this by wrapping the existing simplex refinement in a Kuhn
triangulation (explained in section 5.1) of the hypercube. Any coordinates and
indices returned from the simplex refinement are transformed to the hypercube.
This has the disadvantage that there may be more than one subvertex for the
same position, but it was the easiest to do.

5 Implementing Refinement of Simplices

To implement the refinement of simplices we used Freudenthals algorithm. It
works by mapping the simplex to be refined to the first simplex of the Kuhn
triangulation of a hypercube, refining that hypercube in the canonical way and
then Kuhn triangulating the sub-hypercubes. See J. Beys dissertation[2] for
details.

5.1 Kuhn Triangulation in a Nutshell

Kuhn triangulation of the unit n-cube [0, 1]n is done by starting in the origin
(0, . . . , 0) and advancing by 1 in direction of the first dimension to the point
(1, 0, . . . , 0), then by advancing in direction of the second dimension by 1 to the
point (1, 1, 0, . . . , 0) and so on until all dimensions have been advanced by 1 and
point (1, . . . , 1) is reached. All the n + 1 points visited make up the corners of
the first simplex of the triangulation. The other simplices are constructed in the
same way, the only difference is to permute the order in which the dimensions

7



are advanced. Each permutation in the order of the dimensions corresponds to
exactly one member of the Kuhn triangulation and vice versa. Figure 1 shows
the resulting simplices of a Kuhn triangulation in three dimensions.

5.2 Terminology

Kuhn simplex: We call the members of a Kuhn triangulation we call Kuhn

simplices.

Kuhn0 simplex: The Kuhn simplex corresponding to the identity permuta-
tion.

size of a Kuhn simplex: We define the size of a Kuhn simplex to be equal to
its extension in direction x0 (which is equal to its extension in the direction
of any of the coordinate axes).

5.3 Describing Kuhn Simplices by their Permutation

We describe a simplex of size s of a Kuhn triangulation in n dimensions by
the corresponding permutation P of the vector ~v := (0, 1, . . . , n − 1). To get
the coordinates of the corners ~x0, . . . , ~xn of the simplex, we use the following
algorithm:

• Let ~p := P~v.
• Start at the origin ~x0 := 0.
• For each dimension d from 0 to n− 1:

• ~xd+1 := ~xd + s · ~epd
(~ei is the unit vector in direction i.)

5.4 Index of a Permutation

To give indices to the Kuhn simplices it is sufficient to index the n! permuta-
tions of ~v. All we need is a way to calculate the permutation vector ~p of the
permutation P if given the index.

P can be made up of n transpositions, P = T0 · · ·Tn−1. Each transposition
Ti exchanges some arbitrary element ti with the element i, where ti ≤ i. That
means we can describe P by the integer vector ~t = (t0, · · · , tn−1), where 0 ≤
ti ≤ i.

Now we need to encode the vector ~t into a single number. To do that we
take ti as digit i of a number p written in a “base faculty” notation:

p =

n−1
∑

i=1

i!ti

This number p is unique for each possible permutation P so we could use this as
the index. There is a problem though: we would like the identity permutation
~v = P~v to have index 0. So we define the index I of the permutation slightly
differently:

I =

n−1
∑

i=1

i!(i− ti)

I can easily calculate the ti from I (’/’ denotes integer division):

ti = i− (I/i!) mod (i+ 1)

8



Figure 2: The image shows the Kuhn0 tetrahedron of width 2 (wire-frame). It
is partitioned into a tetrahedron (green), a triangle (red), a line (blue), and a
vertex (black), each of size 1 and each a Kuhn0 simplex in its respective frame.

Note that ~t 6= ~p. ~t obeys the relation ti ≤ i, which is not necessarily true for
~p. To get ~p we have to apply each Ti in turn to ~v.

5.5 Number of Subvertices in a Kuhn0 Simplex

LetN(n, s) be the number of grid points within an n-dimensional Kuhn0 simplex
of size s ∈ N grid units. The number of points in a 0-dimensional simplex is 1,
independent of its size:

N(0, s) = 1

We slice the n+1 dimensional simplex orthogonal to one of the dimensions and
sum the number of points in the n-dimensional sub-simplices. This gives us the
recursion formula

N(n+ 1, s) =

s
∑

i=0

N(n, i) .

This formula is satisfied by the binomial coefficient[3]

N(n, s) =

(

n+ s

s

)

.

Observations:
• N(n, 0) = 1
• N(n, s) = N(s, n)

5.6 Index of a Subvertex within a Kuhn0 Simplex

Let I(~x) be the index of point ~x ∈ N
n in the n-dimensional Kuhn0 simplex of

size s. The coordinates measure the position of the point in grid units and thus
are integer.

Let us explain the idea in 3 dimensions (refer to figure 2). We want to
calculate I(2, 1, 1), which is 6 according to the figure.

9



• First we take the biggest tetrahedron not containing subvertex 6 (which
is the green tetrahedron in the figure) and count the number of vertices
it contains, which gives us 4. For the following we confine ourself to 2
dimensions by fixing x0 = 2, which leaves us with a triangle consisting of
the subvertices 4 to 9.

• Now we count the number of vertices in the biggest triangle not containing
subvertex 6. The triangle consists solely of subvertex 4, so the count is 1.
Again we confine ourself, this time to 1 dimension be fixing x1 = 1. This
leaves us with a line consisting of subvertices 5 and 6.

• We count the subvertices in the biggest line not containing subvertex 6.
The line consist only of subvertex 5 so the count is 1 again. If we confine
ourself any further we’re left with 0 dimensions, so we stop here.

• We add the counted stuff together and get indeed 6.

This can easily be put into a formula. We sum up all the vertices in the
sub-simplices not containing the point in question. We know how to count the
subvertices from the previous section:

I(~x) =
n−1
∑

i=0

N(n− i, xi − 1)

Substituting N , we get

I(~x) =
n−1
∑

i=0

(

n− i+ xi − 1

n− i

)

Since the coordinates of a vertex within the Kuhn0 simplex obey the relation
x0 ≥ x1 ≥ · · · ≥ xn−1, they cannot simply be swapped so the sum is somewhat
ugly.

5.7 Number of Subelements in a Kuhn0 Simplex

In n dimensions, when we refine the n-dimensional hypercube of size s we get
sn sub-hypercubes of size 1. When we do a Kuhn triangulation of the sub-
hypercubes we get n! sub-simplices for each sub-hypercube, in total sn · n! for
the hypercube of size s. When we triangulate this hypercube directly we get n!
Kuhn simplices, each one of equal size, so each contains sn of the sub-simplices.

5.8 Index of a Subelement within a Kuhn0 Simplex

We didn’t come up with a way to simply map a subelement of a Kuhn0 simplex
to an index number. Luckily, the iterator interface only requires that we are
able to calculate the next subelement.

Each subelement is a Kuhn simplex which triangulates a hypercube. We
need to remember the vertex which is the origin of that hypercube and the
index of the permutation that identifies the Kuhn sub-simplex. Now to get to
the next subelement, we simply need to increment the permutation index, and
if it overflows we reset it and increment the origin to the next vertex (we already
know how to do that).

10



Figure 3: Transforming Dunes reference simplex into the Kuhn0 simplex. Step
1 moves each point by its x2 value into x1 direction. Step 2 moves each point
by its new x1 value into x0 direction.

Some subelements generated this way are outside the refined Kuhn0 simplex,
so we have to check for that, and skip them.

5.9 Mapping between some Kuhn Simplex and the Refer-

ence Simplex

Dunes reference simplex is defined as having one corner at the origin and the
others at 1 at each coordinate axis. This does not match any Kuhn simplex,
but the transformation can be done quiet easily.

5.9.1 Kuhn0 Simplex

The algorithm to transform a point ~x = (x0, . . . , xn−1) from the reference sim-
plex of dimension n to the Kuhn0 simplex (as illustrated in figure 3) is as follows:

• For each dimension d from n− 2 down to 0:
• xd := xd + xd+1.

The reverse (from Kuhn0 to reference) is simple as well:
• For each dimension d from 0 up to n− 2:

• xd := xd − xd+1.

5.9.2 Arbitrary Kuhn Simplices

For arbitrary Kuhn simplices we have to take the permutation of that simplex
into account. So to map from the reference simplex of n dimensions to the

11



Kuhn simplex with the permutation P (which is described by the vector ~p =
P (0, . . . , n− 1)) we do:

• For each dimension d from n− 2 down to 0:
• xpd

:= xpd
+ xpd+1

.

And for the reverse:
• For each dimension d from 0 up to n− 2:

• xpd
:= xpd

− xpd+1
.

References

[1] Distributed and Unified Numerics Environment http://www.dune-

project.org.

[2] Jürgen Bey: “Finite-Volumen- und Mehrgitterverfahren für elliptische
Randwertprobleme.” The relevant part is available in english at http:

//www.igpm.rwth-aachen.de/bey/ftp/simplex.ps.gz.

[3] Bronstein, Semendjajew, Musiol, Mühlig “Taschenbuch der Mathematik”
(1999)

12


