
Communication within the Iterative Solver Template

Library (ISTL)∗

Markus Blatt

Interdisziplinäres Zentrum für Wissenschaftliches Rechnen,

Universität Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg,

email: Markus.Blatt@iwr.uni-heidelberg.de

March 26, 2010

Abstract

This document describes usage and interface of the classes meant for setting up
the communication within a parallel programm using ISTL. As most of the commu-
nication in distributed programm occur in the same pattern it is often more efficient
(and of course more easy for the programmer) to build the communication pattern
once in the programm and then use multiple times (e. g. at each iteration step of an
iterative solver).

Contents

1 Introduction 1

2 Index Sets 1

3 Remote Indices 5

4 Communication Interface 5

5 Communicator 5

1 Introduction

2 Index Sets

During distributed computations every discretization point needs to be indentified uniquely
by every process regardless of where it is actually stored. In most scenarios it not ad-
visable to store all the data needed for the computation on every process as memory is
often a limiting factor in scientific computing. Therefore the data will distributed be-
tween the processes and each process will store only the data corresponding to its own
part of the distribution. Due to the efficiency of the local commnunication is it normally
best practice to hold the locally stored data in consecutive memory chunks.

This means that for the local computation the data must be adressable by a consec-
utive index starting from 0. When using adaptive discretization methods there might be
need to reorder the indices after adding and/or deleting some of the discretization points.
Therefore this index does not have to be persistent. Further on we will call this index
local index.

For the communication phases of our algorithms these locally stored indices must also
be adressable by a global identifier to be able to store the received values tagged with

∗Part of the Distributed and Unified Numerics Environment (DUNE) which is available from the site
http://www.dune.uni-hd.de/

1



the global identifiers at the correct local index in the consecutive local memory chunk.
To ease the addition and removal of discretization points this global identifier has to be
persistent. Further on we will call this global identifier global index.

IndexSet Let I ⊂ N0 be an arbitrary, not necessarily consecutive, index set identifying
all discretization points of the computation.

Further more let (Ip)p∈[0,P ),
P−1⋃

p=0
Ip = I be an overlapping decompostion of the global

index set I into the sets of indices Ip corresponding to the discretization points stored
locally on process p.

Then the

template <typename TG , typename TL, int N>

class IndexSet;

realizes the one to one mapping

γp : Ip −→ Ilocp := [0, np)

of the globally unique index onto the local index.
The template parameter TG is the type of the global index and TL is the type of the

local index, that has to be convertible to std::size_t, and the parameter N is used
internally to specify the chunk size of the array list.

The pairs of global and local index are ordered by ascending global index. Thus it it
possible to access the pairs via operator[](TG& global) in log(n) time, where n is the
number of pairs in the set.

Due to the ordering the index set can only be changed, i. e. indices added or deleted,
in a special resize phase. By calling the functions beginResize() and endResize() the
programmer indicates that the resize phase starts and ends, respectively. During the call
of endResize() the deleted indices will be removed and the added indices will be merged
with the existing ones.

To be able to attach further information to the index the only prerequesite for the
type of the local index is that it is convertible to std::size_t as it it meant for adressing
array elements.

ParallelLocalIndex When dealing with overlapping index sets in distributed comput-
ing there often is the need to distinguish different part of the index set, e. g. mark some
of the indices as owned by the process and others as owned by another process.

This can easily be done by using the class

template <typename TA>

class ParlallelLocalIndex;

where the template parameter TA is the type of the attributes used, e. g. enum{owner, overlap}.
As the programmer often knows in advance which indices might also be present on

other processes there is the possiblity to mark the index as public.

Usage Examples Let us look at a short example on how to build an index set. The
code in Listing 1 sets up an index set with 8 components on two processes. This index
set might be used to access as distributed field or std::vector as sketched in Figure 1.

The process 0 stores in his /em local field a0 the values corresponding to the global
indices I0 = {0, 2, 6, 3, 5}, in that order, of the global field a and process I the entries
corresponding to the values at the indices I1 = {0, 1, 7, 5, 4}.

2



0 2 3 410 2 3 41

local indices

local array in processor 0

0 1 2 3 4 5 6 7

local indices

local array in processor 1

global array with global indices

a:

a0: a1:

Figure 1: A Distributed Field

Listing 1: Build an Index Set

// $ Id : b u i l d i n d e x s e t . hh 1169 2010−01−28 14 : 5 8 : 3 5Z mdroh 01 $

#ifndef BUILDINDEXSET_HH

#define BUILDINDEXSET_HH

#include <dune/istl/indexset.hh >

#include <dune/istl/plocalindex.hh>

/∗∗
∗ @br i e f F lag f o r marking t h e i n d i c e s .
∗/

enum Flag{owner , overlap };

// The t y p e o f l o c a l i nd e x we use
typedef Dune:: ParallelLocalIndex <Flag > LocalIndex;

/∗∗
∗ @br i e f Add i n d i c e s t o t h e example i nde x s e t .
∗ @param ind e xS e t The inde x s e t t o b u i l d .
∗/

template <class C, class TG, int N>

void build(C& comm , Dune:: ParallelIndexSet <TG,LocalIndex ,N>& indexSet)

{

//
// The number o f p r o c e s s e s
int size=comm.size ();

3



// The rank o f our p r o c e s s
int rank=comm.rank ();

// I n d i c a t e t h a t we add or remove i n d i c e s .
indexSet.beginResize ();

if(rank ==0){

indexSet.add(0, LocalIndex (0,overlap ,true ));

indexSet.add(2, LocalIndex (1,owner ,true ));

indexSet.add(6, LocalIndex (2,owner ,true ));

indexSet.add(3, LocalIndex (3,owner ,true ));

indexSet.add(5, LocalIndex (4,owner ,true ));

}

if(rank ==1){

indexSet.add(0, LocalIndex (0,owner ,true ));

indexSet.add(1, LocalIndex (1,owner ,true ));

indexSet.add(7, LocalIndex (2,owner ,true ));

indexSet.add(5, LocalIndex (3,overlap ,true ));

indexSet.add(4, LocalIndex (4,owner ,true ));

}

// Mod i f i c a t i o n i s ove r
indexSet.endResize ();

}

#endif

Due to the complexity of operator[](TG& global) it is always advisable to use
iterators, obtained by calling begin() and end() respectively, to access the index pairs
of the set.

Listing 2 demonstrates their usage. First the maximum local index imax of the
set is computed, and the the local indices are renumbered. Due to the ordering the
local index with the smallest corresponding global index becomes imax and the rest is
numbered consecutively decreasingly with increasing global index. Let n be the number of
index pairs in the set than local index corresponding to the largets global index becomes
imax − n.

Listing 2: Usage of Index Set Iterators

// $ Id : r e v e r s e . hh 942 2008−09−10 18 : 2 1 : 5 7Z c h r i s t i $

#ifndef REVERSE_HH

#define REVERSE_HH

#include"buildindexset.hh"

/∗∗
∗ @br i e f Reverse t h e l o c a l i n d i c e s o f an inde x s e t .
∗
∗ Let t h e i nde x s e t have N e n t r i e s than t h e inde x 0 w i l l become N−1,
∗ 1 become N−2, . . . , and N−1 w i l l become 0 .
∗ @param ind e xS e t The inde x s e t t o r e v e r s e .

4



∗/
template <typename TG, typename TL, int N>

void reverseLocalIndex (Dune:: ParallelIndexSet <TG,TL,N>& indexSet)

{

// r e v e r s e t h e l o c a l i n d i c e s
typedef typename Dune:: ParallelIndexSet <TG,TL,N>:: iterator iterator;

iterator end = indexSet.end ();

size_t maxLocal = 0;

// f i n d t h e maximal l o c a l i nd e x
for(iterator index = indexSet.begin (); index != end; ++index ){

// Get t h e l o c a l i nd e x
LocalIndex& local = index ->local ();

maxLocal = std::max(maxLocal , local.local ());

}

for(iterator index = indexSet.begin (); index != end; ++index ){

// Get t h e l o c a l i nd e x
LocalIndex& local = index ->local ();

local = maxLocal --;

}

}

#endif

3 Remote Indices

4 Communication Interface

5 Communicator

5


	Introduction
	Index Sets
	Remote Indices
	Communication Interface
	Communicator

