
Iterative Solver Template Library∗

Peter Bastian, Markus Blatt
Institut für parallele und verteilte Systeme (IPVS),

Universität Stuttgart, Universitätsstr. 38, D-70569 Stuttgart,
email: Peter.Bastian@ipvs.uni-stuttgart.de, Markus.Blatt@ipvs.uni-stuttgart.de

March 26, 2010

Abstract

This document describes the rationale behind and use of the Iterative Solver
Template Library (ISTL) which provides a set of C++ templates to represent vectors,
(sparse) matrices and some generic algorithms based on these. The most prominent
features of the matrix/vector classes is that they support a recursive block structure
in a bottom up way. The classes can be used, e. g., to efficiently implement block
preconditioners for hp-finite elements.

Contents

1 Introduction 1

2 Vectors 3
2.1 Vector spaces 3
2.2 Vector classes 3
2.3 Vectors are containers 4
2.4 Operations 5
2.5 Memory model 6
2.6 Vector creation 6

3 Matrices 6
3.1 Linear mappings 6
3.2 Matrix classes 6
3.3 Matrix containers 6
3.4 Precision control 7
3.5 Operations 7

3.6 Matrix creation 7

4 Algorithms 7

4.1 Input/output 7

4.2 Block recursion 7

4.3 Triangular solves 7

4.4 Simple iterative solvers 7

4.5 Sparse LU decomposition 8

5 Solver Interface 8

5.1 Operators 8

5.2 Scalarproducts 8

5.3 Preconditioners 8

5.4 Solvers 8

5.5 Parallel Solvers 9

6 Performance 9

1 Introduction

The numerical solution of partial differential equations (PDEs) frequently requires the
solution of large and sparse linear systems. Naturally, there are many libraries available
on the internet for doing sparse matrix/vector computations. A comprehensive overview
is given in [7].

The widely availably Basic Linear Algebra Subprograms (BLAS) standard has been
extended to cover als sparse matrices [5]. BLAS divides the available functions into
level 1 (vector operations), level 2 (vector/matrix operations) and level 3 (matrix/matrix

∗Part of the Distributed and Unified Numerics Environment (DUNE) which is available from the site
http://www.dune-project.org/

1

operations). BLAS for sparse matrices contains only level 1 and 2 functionality and
is quite different to the standard for dense matrices. The standard uses procedural
programming style and offers only a FORTRAN and C interface. As a consequence, the
interface is “coarse grained”, meaning that “small” functions such as access to individual
matrix elements is relatively slow.

Generic programming techniqes in C++ offer the possibility to combine flexibility and
reuse (“efficiency of the programmer”) with fast execution (“efficieny of the program”) as
has been demonstrated with the Standard Template Library (STL), [15] or the Blitz++
library for multidimensional arrays [6]. A variety of template programming techniques
such as traits, template metaprograms, expression templates or the Barton-Nackman
trick are used in the implementations, see [2, 16] for an introduction. Application of
these ideas to matrix/vector operations is available with the Matrix Template Library
(MTL), [12, 14]. The Iterative Template Library (ITL), [11], implements iterative solvers
for linear systems (mostly Krylov subspace methods) in a generic way based on MTL.
The Distributed and Unified Numerics Environment (DUNE), [3, 8], applies the STL
ideas to finite element computations.

Why bother with yet another OO-implementation of (sparse) linear algebra when
libraries, most notably the MTL, are available? The most important reason is that the
functionality in existing libraries has not been designed specifically with advanced finite
element methods in mind. Sparse matrices in finite element computations have a lot of
structure. Here are some examples:

• Certain discretizations for systems of PDEs or higher order methods result in ma-
trices where individual entries are replaced by small blocks, say of size 2 × 2 or
4× 4, see Fig. 1(a). Dense blocks of different sizes e. g. arise in hp Discontinuous
Galerkin discretization methods, see Fig. 1(b). Straightforward iterative methods
solve these small blocks exactly, see e. g. [4].

• Equation-wise ordering for systems results in matrices having an n×n block struc-
ture where n corresponds to the number of variables in the PDE and the blocks
themselves are large, see Fig. 1(d). As an example we mention the Stokes system.
Iterative solvers such as the SIMPLE or Uzawa algorithm use this structure.

• Other discretizations, e. g. those of reaction/diffusion systems, produce sparse
matrices whose blocks are sparse matrices of small dense blocks, see fig. 1(c).

• Other structures that can be exploited are the level structure arising from hierarchic
meshes, a p-hierarchic structure (e. g. decomposition in linear and quadratic part),
geometric structure from decomposition in subdomains or topological structure
where unknowns are associated with nodes, edges, faces or elements of a mesh.

Figure 1: Block structure of matrices arising in the finite element method

2

It is very important to note that this structure is typically known at compile-time and this
knowledge should be exploited to produce efficient code. Moreover, block structuredness
is recursive, i. e. matrices are build from blocks which can themselves be build from
blocks.

The Matrix Template Library also offers the possibility to partition a matrix into
blocks. However, their concept is top-down, i. e. an already existing matrix is enriched
by additional information to implement the block structure. This is done at run-time and
might thus be less efficient and requires additional memory. In contrast the bottom-up
composition of block matrices from blocks can save memory. We would like to stress that
the library to be presented in this paper is not nearly as broad in scope as the MTL.

2 Vectors

The interface of our vector classes is designed according to what they represent from a
mathematical point of view. The vector classes are representations of vector spaces.

2.1 Vector spaces

In mathemetics vectors are elements of a vector space. A vector space V (K), defined over
a field K, is a set of elements with two operations: (i) vector space addition + : V ×V → V

and (ii) scalar multiplication ∗ : K×V → V . These operations obey certain formal rules,
see your favourite textbook on linear algebra, e. g. [10]. In addition a vector space may
be normed, i. e. there is a function (obeying certain rules) ‖.‖ : V → R which measures
distance in the vector space. Even more specialized vector spaces have a scalar product
which is a function · : V × V → K.

How do you construct a vector space? The easiest way is to take a field, such as
K = R or K = C and take a tensor product:

V = K
n = K×K× . . .×K

︸ ︷︷ ︸

n times

.

n ∈ N is called the dimension of the vector space. There are also infinite-dimensional
vector spaceswhich are, however, not of interest in the context here. The idea of tensor
products can be generalized. If we have vector spaces V1(K), . . . , Vn(K) we can construct
a new vector space by setting

V (K) = V1 × V2 × . . .× Vn.

The Vi can be any vector space over the field K. The dimension of V is the sum of
the dimensions of the Vi. For a a mathematician every finite-dimensional vector space
is isomorphic to the R

k for an appropriate k but in our applications it is important to
know the difference between (R2)7 and R

14. Having these remarks about vector spaces
in mind we can now turn to the class design.

2.2 Vector classes

ISTL provides the following classes to make up vector spaces:

FieldVector. The template<class K, int n> FieldVector<K,n> class template is
used to represent a vector space V = K

n where the field is given by the type K. K may be
double, float, complex<double> or any other numeric type. The dimension given by the

3

template parameter n is assumed to be small. Members of this class are implemented with
template metaprograms to avoid tiny loops. Example: Use FieldVector<double,2> to
define vectors with a fixed dimension 2.

BlockVector. The template<class B> BlockVector class template builds a vec-
tor space V = Bn where the “block type” B is given by the template parameter B. B

may be any other class implementing the vector interface. The number of blocks n is
given at run-time. Example:

BlockVector <FieldVector <double ,2> >

can be used to define vectors of variable size where each block in turn consists of two
double values.

VariableBlockVector. The template<class B> VariableBlockVector class can
be used to construct a vector space having a two-level block structure of the form
V = Bn1 × Bn2 × . . . × Bnm , i.e. it consists of m blocks i = 1, . . . ,m and each block in
turn consists of ni blocks given by the type B. In principle this structure could be built
also with the previous classes but the implementation here is more efficient. It allocates
memory in one big array for all components and for certain operations it is more efficient
to interpret the vector space as V = B

∑
m

i=1
ni .

2.3 Vectors are containers

Vectors are containers over the base type K or B in the sense of the Standard Template
Library. Random access is provided via operator[](int i) where the indices are in the
range 0, . . . , n − 1 with the number of blocks n given by the N method. Here is a code
fragment for illustration:

typedef Dune:: FieldVector <std::complex <double >,2> BType;

Dune:: BlockVector <BType > v(20);

v[1] = 3.14;

v[3][0] = 2.56;

v[3][1] = std::complex <double >(1,-1);

Note how one operator[]() is used for each level of block recursion.
Sequential access to container elements is provided via iterators. Here is a generic

function accessing all the elements of a vector:

template <class V> void f (V& v)

{

typedef typename V:: Iterator iterator;

for (iterator i=v.begin (); i!=v.end (); ++i)

*i = i.index ();

typedef typename V:: ConstIterator const_iterator;

for (const_iterator i=v.begin (); i!=v.end (); ++i)

std::cout << (*i). two_norm () << std::endl;

}

The Iterator class provides read/write access while the ConstIterator provides read-
only access. The type names are accessed via the ::-operator from the scope of the
vector class.

4

A uniform naming scheme enables writing of generic algorithms. The following types
are provided in the scope of any vector class:

2.4 Operations

A full list of all members of a vector class is given in Table 1. The norms are the same
as defined for the sparse BLAS standard [5]. The “real” variants avoid the evaluation
of a square root for each component in case of complex vectors. The allocator_type

member type is explained below in the section on memory management.

expression return type note

X::field type T T is assignable
X::block type T T is assignable
X::allocator type T see mem. mgt.
X::blocklevel int block levels inside
X::Iterator T read/write access
X::ConstIterator T read-only access

X::X() empty vector
X::X(X&) deep copy
X::∼X() free memory
X::operator=(X&) X&

X::operator=(field type&) X& from scalar

X::operator[](int) field type&

X::operator[](int) const field type&

X::begin() Iterator

X::end() Iterator

X::rbegin() Iterator for reverse iteration
X::rend() Iterator

X::find(int) Iterator

X::operator+=(X&) X& x = x+ y

X::operator-=(X&) X& x = x− y

X::operator*=(field type&) X& x = αx

X::operator/=(field type&) X& x = α−1x

X::axpy(field type&,X&) X& x = x+ αy

X::operator*(X&) field type x · y

X::one norm() double
∑

i

√

Re(xi)2 + Im(xi)2

X::one norm real() double
∑

i(|Re(xi)|+ |Im(xi)|)

X::two norm() double
√∑

i(Re(xi)2 + Im(xi)2)
X::two norm2() double

∑

i(Re(xi)
2 + Im(xi)

2)

X::infinity norm() double maxi
√

Re(xi)2 + Im(xi)2

X::infinity norm real() double maxi(|Re(xi)|+ |Im(xi)|)

X::N() int number of blocks
X::dim() int dimension of space

Table 1: Members of a class X conforming to the vector interface.

5

2.5 Object memory model and memory management

The memory model for all ISTL objects is deep copy as in the Standard Template Library
and in contrast to the Matrix Template Library. Therefore, references must be used to
avoid excessive copying of objects. On the other hand temporary vectors with appropriate
structure can be generated simply with the copy constructor.

2.6 Vector creation

3 Matrices

3.1 Linear mappings

3.2 Matrix classes

For a matrix representing a linear map (or homomorphism) A : V 7→ W from vector
space V to vector space W the recursive block structure of the matrix rows and columns
immediatly follows from the recursive block structure of the vectors representing the
domain and range of the mapping, respectively. As a natural consequence we designed
the following matrix classes:

FieldMatrix. the template<class K, int n> FieldMatrix<K,n,m> class template
is used to represent a linear map M : V1 → V2 where V1 = K

n and V2 = K
m are

vector spaces over the field given by template parameter K. K may be double, float,
complex<double> or any other numeric type. The dimensions of the two vector spaces
given by the template parameters n and m are assumed to be small. The matrix is stored
as a dense matrix. Example: Use FieldMatrix<double,2,3> to define a linear map
from a vector space over doubles with dimension 2 to one with dimension 3.

BCRSMatrix. The template<class B> BCRSMatrix class template represents a sparse
matrix where the “block type” B is given by the template parameter B. B may be any
other class implementing the matrix interface. The matrix class uses a compressed row
storage scheme.

VariableBCRSMatrix. The template<class B> VariableBCRSMatrix class can
be used to construct a linear map between two vector spaces having a two-level block
structure V = Bn1 × Bn2 × . . . × Bnm and W = Bm1 × Bm2 × . . . × Bmk . Both are
represented by the template<class B> VariableBlockVector class, see 2.2. This
is not implemented yet.

3.3 Matrices are containers of containers

Matrices are containers over the matrix rows. The matrix rows are containers over the
type K or B in the sense of the Standard Template Library. Random access is provided
via operator[](int i) on the matrix to the matrix rows and on the matrix rows to the
matrix columns (if present). Note that except for FieldMatrix, which is a dense matrix,
operator[] on the matrix row triggers a binary search for the column.

For sequential access use RowIterator and ColIterator for read/write access or
ConstRowIterator and ConstColIterator for readonly access to rows and columns,
respectively. Here is a small example that prints the sparsity pattern of a matrix of type
M:

6

typedef typename M:: ConstRowIterator RowI;

typedef typename M:: ConstColIterator ColI;

for(RowI row = matrix.begin (); row != matrix.end (); ++row){

std::cout << "row "<<row.index()<<": "

for(ColI col = row ->begin (); col != row ->end (); ++col)

std::cout <<col.index()<<" ";

std::cout <<std::endl;

}

3.4 Precision control

3.5 Operations

As with the vector interface a uniform naming convention enables generic algorithms.
See Table 2 for a complete list of names.

3.6 Matrix creation

4 Algorithms

4.1 Input/output

4.2 Block recursion

The basic feature of the concept described by the matrix and vector classes, is their
recursive block structure. Let A be a matrix with blocklevel l > 1 then each block Aij

can be treated as (or actually is) a matrix itself. This recursiveness can be exploited in
generic algorithm using the defined block_level of the matrix and vector classes.

Most preconditioner can be modified to honor this recursive structure for a specific
number of block levels k. They then work as normal on the offdiagonal blocks, treating
them as traditional matrix entries. For the diagonal values a special procedure applies:
If k > 1 the diagonal is treated as a matrix itself and the preconditioner is applied
recursively on the matrix representing the diagonal value D = Aii with blocklevel k − 1.
For the case that k = 1 the diagonal is treated as a matrix entry resulting in a linear
solve or an identity operation depending on the algorithm.

4.3 Triangular solves

In the formulation of most iterative methods upper and lower triangular and diagonal
solves play an important role. ISTL provides block recursive versions of these generic
building blocks using template metaprogramming, see Table 3 for a listing of these meth-
ods. In the table matrix A is decomposed into A = L + D + U , where L is a strictly
lower block triangular, D is a block diagonal and U is a strictly upper block triangular
matrix. An arbitrary block recursion level can be given by an additional parameter. If
this parameter is omitted it defaults to 1.

4.4 Simple iterative solvers

Using the same block recursive template metaprogramming technique, kernels for the
defect formulations of simple iterative solvers are available in ISTL. The number of block
recursion levels can again be given as an additional argument. See Table 4 for a list of
these kernels.

7

4.5 Sparse LU decomposition

5 Solver Interface

The solvers in ISTL do not work on matrices directly. Instead we use an abstract Operator
concept. Thus we can even model and solve linear maps that are not stored as matrices
(e. g. on the fly computed linear operators).

5.1 Operators

The base class template<class X, class Y> LinearOperator represents linear maps.
The template parameter X is the type of the domain and Y is the type of the range of
the operator. A linear operator provides the methods apply(const X& x, Y& y) and
apply applyscaledadd(const X& x, Y& y) performing the operations y = A(x) and
y = y + αA(x), respectively. The subclass template<class M, class X, class Y>

AssembledLinearOperator represents linear operators that have a matrix representa-
tion. Convertion from any matrix into a linear operator is done by the class template<
class M, class X, class Y> MatrixAdapter.

5.2 Scalarproducts

For convergence tests and the stopping criteria Krylow methods need to compute scalar
products and norms on the underlying vector spaces. The base class template<class

X> Scalarproduct provides methods field_type dot(const X& x, const X&y) and
double norm(const X& x) to calculate these. For sequential programs use template<

class X> SeqScalarProduct which simply maps this to functions of the vector imple-
mentations.

5.3 Preconditioners

The template<class X, class Y> Preconditioner provides the abstract base class
for all precondioners in ISTL. The method void pre(X& x, Y& b) has to be called
before applying the preconditioner. Here x is the left hand side and b is the right hand
side of the operator equation. The method may, e. g. scale the system, allocate memory
or compute an (I)LU decomposition. The method void apply(X& v, const Y&) applies
one step of the preconditioner to the system A(~v) = ~d. Here b should contain the current
defect and v should be 0. Upon exit of the method v contains the computed update to
the current guess, i. e. ~v = M−1~d where M is the approximate inverse of the operator A
characterizing the preconditioner. The method void post(X& x) should be called after
all computations to give the precondtioner the chance to clean allocated resources.

See Table 5 for a list of available preconditioner. They have the template parameters
M representing the type of the matrix they work on, X representing the type of the
domain, Y representing the type of the range of the linear system. The block recursive
preconditioner are marked with “x” in the last column. For them the recursion depth is
specified via an additional template parameter int l. The column labeled “s/p” specifies
whether they support sequential and/or parallel mode.

5.4 Solvers

All solvers are subclasses of the abstract base class template<class X, class Y>

InverseOperator representing the inverse of an operator from the domain of type X to

8

the range of type Y. The actual solve of the system A(~x) = ~b is done in the method void

apply(X& x, Y& b, InverseOperatorResult& r). In the InverseOperatorResult

some statistics about the solution process, e. g. iteration count, achieved defect reduc-
tion, etc., are stored. All solvers only use methods of instances of LinearOperator,
ScalarProduct and Preconditioner. These are provided in the constructor.

See Table 6 for a list of available solvers. All solvers are template classes with a
template parameter X providing them with the vector implementation used.

5.5 Parallel Solvers

Instead of using parallel data structures (matrices and vectors) that (implicitly) know the
data distribution and communication patterns like in PETSc [13, 1] we decided to decou-
ple the parallelization from the data structures used. Basically we provide an abstract
consistency model on top of our linear algebra. This is hidden in the parallel implementa-
tions of the interfaces of LinearOperator, Scalarproduct and Preconditioner, which
assure consistency of the data (by communication) for the InverseOperator implemen-
tation. Therefore the same Krylow method algorithms work in parallel and sequential
mode.

Based on the idea proposed in [9] we implemented parallel overlapping Schwarz pre-
conditioners with inexact (sequential) subdomain solvers and a parallel algebraic multi-
grid preconditioner together with appropriate implementations of LinearOperator and
Scalarproduct. Nonoverlapping versions are currently being worked on.

Note that using this approach it easy two switch form the currently implemented MPI
version to new parallel programming paradigms that might be needed on new platforms.

6 Performance

We evaluated the performance of our implementation on a Petium 4 Mobile 2.4 GHz
with a measured memory bandwith of 1084 MB/s for the daypy operation (x = y + αz)
in Tables 7. The code was comiled with the GNU C++ compiler version 4.0 with -O3
optimization. In the tables N is the number of unknown blocks (equals the number
of unknows for the scalar cases in Tables 7(a), 7(b), 7(d)). The performance for the
scalarproduct, see Table 7(a), and the daxpy operation, see Table 7(b) is nearly optimal
and for large N the limiting factor is clearly the memory bandwith. Table 7(c) shows
that we take advantage of cache reusage for matrices of dense blocks with block size
b > 1. In Table 7(d) we compared the generic implementation of the Gauss Seidel solver
in ISTL with a specialized C implementation. The measured times per iteration show
that there is now lack of computational efficiency due to the generic implementation.

References

[1] S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley,
L. C. McInnes, B. F. Smith, and H Zhang. PETSc users manual. Technical Report
ANL-95/11 - Revision 2.1.5, Argonne National Laboratory, 2004.

[2] J. J. Barton and L. R. Nackman. Scientific and Engineering C++. Addison-Wesley,
1994.

[3] P. Bastian, M. Droske, C. Engwer, R. Klöfkorn, T. Neubauer, M. Ohlberger, and
M. Rumpf. Towards a unified framework for scientific computing. In R. Korn-
huber, R.H.W. Hoppe, D.E. Keyes, J. Périaux, O. Pironneau, and J. Xu, editors,

9

Proceedings of the 15th Conference on Domain Decomposition Methods, LNCSE.
Springer-Verlag, 2004. accepted for publication.

[4] P. Bastian and R. Helmig. Efficient fully-coupled solution techniques for two-phase
flow in porous media. Parallel multigrid solution and large scale computations. Adv.
Water Res., 23:199–216, 1999.

[5] BLAST Forum. Basic linear algebra subprograms technical (BLAST) forum stan-
dard, 2001. http://www.netlib.org/blas/blast-forum/.

[6] Blitz++. http://www.oonumerics.org/blitz/.

[7] Jack Dongarra. List of freely available software for linear algebra on the web, 2006.
http://netlib.org/utk/people/JackDongarra/la-sw.html.

[8] DUNE. http://www.dune-project.org/.

[9] G. Haase, U. Langer, and A. Meyer. The approximate dirichlet domain decomposi-
tion method. part i: An algebraic approach. Computing, 47:137–151, 1991.

[10] J. Hefferson. Linear algebra, May 2006. http://joshua.amcvt.edu/.

[11] Iterative template library. http://www.osl.iu.edu/research/itl/.

[12] Matrix template library. http://www.osl.iu.edu/research/mtl/.

[13] PETSc. http://www.mcs.anl.gov/petsc/.

[14] J. Siek and A. Lumsdaine. A modern framework for portable high-performance
numerical linear algebra. In H. P. Langtangen, A. M. Bruaset, and E. Quak, editors,
Advances in Software Tools for Scientific Computing, volume 10 of LNCSE, pages
1–56. Springer-Verlag, 2000.

[15] B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1997.

[16] T. Veldhuizen. Techniques for scientific C++. Technical report, Indiana University,
1999. Computer Science Department.

10

expression return type note

M::field type T T is assignable
M::block type T T is assignable
M::row type T a T is assignable
M::allocator type T see mem. mgt.
M::blocklevel int block levels inside
M::RowIterator T over rows
M::ColIterator T over columns
M::ConstRowIterator T over rows
M::ConstColIterator T over columns

M::M() empty matrix
M::M(M&) deep copy
M::∼M() free memory
M::operator=(M&) M&

M::operator=(field type&) M& from scalar

M::operator[](int) row type&

M::operator[](int) const row type&

M::begin() RowIterator

M::end() RowIterator

M::rbegin() RowIterator reverse iteration
M::rend() RowIterator

M::operator*=(field type&) M& A = αA

M::operator/=(field type&) M& A = α−1A

M::umv(X& x,Y& y) y = y +Ax

M::mmv(X& x,Y& y) y = y −Ax

M::usmv(field type&,X& x,Y& y) y = y + αAx

M::umtv(X& x,Y& y) y = y +ATx

M::mmtv(X& x,Y& y) y = y −ATx

M::usmtv(field type&,X& x,Y& y) y = y + αATx

M::umhv(X& x,Y& y) y = y +AHx

M::mmhv(X& x,Y& y) y = y −AHx

M::usmhv(field type&,X& x,Y& y) y = y + αAHx

M::solve(X& x,Y& b) x = A−1b

M::inverse(M& B) B = A−1

M::leftmultiply(M& B) M& A = BA

M::frobenius norm() double see text
M::frobenius norm2() double see text
X::infinity norm() double see text
X::infinity norm real() double see text

M::N() int row blocks
M::M() int col blocks
M::rowdim(int) int dim. of row block
M::rowdim() int dim. of row space
M::coldim(int) int dim. of col block
M::coldim() int dim. of col space
M::exists(int i, int j) bool

Table 2: Members of a class M conforming to the matrix interface. X and Y are any vector
classes.

11

function computation

bltsolve(A,v,d) v = (L+D)−1d

bltsolve(A,v,d,ω) v = ω(L+D)−1d

ubltsolve(A,v,d) v = L−1d

ubltsolve(A,v,d,ω) v = ωL−1d

butsolve(A,v,d) v = (D + U)−1d

butsolve(A,v,d,ω) v = ω(D + U)−1d

ubutsolve(A,v,d) v = U−1d

ubutsolve(A,v,d,ω) v = ωU−1d

bdsolve(A,v,d) v = D−1d

bdsolve(A,v,d,ω) v = ωD−1d

Table 3: Functions available for block triangular and block diagonal solves. The matrix
A is decomposed into A = L + D + U where L is strictly lower block triangular, D is
block diagonal and U is strictly upper block triangular. Standard is one level of block
recursion, arbitrary level can be given by additional parameter.

function computation

dbjac(A,x,b,ω) x = x+ ωD−1(b−Ax)
dbgs(A,x,b,ω) x = x+ ω(L+D)−1(b−Ax)

bsorf(A,x,b,ω) xk+1

i = xki + ωA−1

ii

[

bi −
∑

j<i

Aijx
k+1

j −
∑

j≥i

Aijx
k
j

]

bsorb(A,x,b,ω) xk+1

i = xki + ωA−1

ii

[

bi −
∑

j≤i

Aijx
k
j −

∑

j>i

Aijx
k+1

j

]

Table 4: Kernels for iterative solvers. The matrix A is decomposed into A = L+D + U

where L is strictly lower block triangular, D is block diagonal and U is strictly upper
block triangular. Standard is one level of block recursion, arbitrary level can be given by
additional parameter.

Table 5: Preconditioners
class implements s/p recursive

SeqJac Jacobi method s x
SeqSOR successive overrelaxation (SOR) s x
SeqSSOR symmetric SSOR s x
SeqILU incomplete LU decomposition (ILU) s
SeqILUN ILU decpmposition of order N s
Pamg::AMG algebraic multigrid method s/p
BlockPreconditioner Additive overlapping Schwarz p

Table 6: ISTL Solvers
class implements

LoopSolver only apply precoditioner multiple time
GradientSolver preconditioned radient method
CGSolver preconditioned conjugate gradient method
BiCGStab preconditioned biconjugate gradient stabilized method

12

Table 7: Performance Tests
(a) scalar product

N 500 5000 50000 500000 5000000
MFLOPS 896 775 167 160 164

(b) daxpy operation y = y + αx

500 5000 50000 500000 5000000
936 910 108 103 107

(c) Matrix-vector product, 5-point stencil, b: block size

N, b 100,1 10000,1 1000000,1 1000000,2 1000000,3
MFLOPS 388 140 136 230 260

(d) Damped Gaußß-Seidel

C ISTL
time / it. [s] 0.17 0.18

13

	Introduction
	Vectors
	Vector spaces
	Vector classes
	Vectors are containers
	Operations
	Memory model
	Vector creation

	Matrices
	Linear mappings
	Matrix classes
	Matrix containers
	Precision control
	Operations
	Matrix creation

	Algorithms
	Input/output
	Block recursion
	Triangular solves
	Simple iterative solvers
	Sparse LU decomposition

	Solver Interface
	Operators
	Scalarproducts
	Preconditioners
	Solvers
	Parallel Solvers

	Performance

