
The DUNE Buildsystem HOWTO

Christian Engwer∗

March 1 2009

∗Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Universität Heidelberg,

Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany

http://www.dune-project.org/

Contents

1 Getting started 2

2 Creating a new DUNE project 2

2.1 Configuring new DUNE module using duneproject . 2

3 Dune module guidelines 4

4 The Structure of DUNE 4

5 Building Single Modules Using the GNU AutoTools 5

5.1 Makefile.am . 7
5.1.1 Overview . 7
5.1.2 Building Documentation . 14

5.2 configure.ac . 15
5.3 Using configuration information provided by configure 17
5.4 dune-autogen . 17
5.5 m4 files . 18

6 Building Sets of Modules Using dunecontrol 18

7 Further documentation 20

1

http://www.dune-project.org/

1 Getting started

1 Getting started

TODO: How do I build the grid howto?

2 Creating a new DUNE project

From a buildsystem point of view there is no difference between a DUNE application and a DUNE module.

DUNE modules are packages that offer a certain functionality that can be used by DUNE applications.
Therefore DUNE modules offer libraries and/or header files. A DUNE module needs to comply with
certain rules (see 3).
Creating a new DUNE project has been covered in detail in 2.1 using duneproject to take work off

of the user. This is also the recommended way to start a new project. If for whatever reasons you do
not wish to use duneproject here is the bare minimum you have to provide in order to create a new
project:

• a dune.module file
Usually you will only need to specify the parameters Module and Depends.

• Note: an dune-autogen script is not needed any more!

• a basic m4 file
You need to provide two macros MODULE CHECKS and MODULE CHECK MODULE.

• a configure.ac file
Have look at the configure.ac in dune-grid for example. The most important part is the
call to DUNE CHECK ALL which runs all checks needed for a DUNE module, plus the checks for the
dependencies.

2.1 Configuring new DUNE module using duneproject

This section tells you how to begin working with DUNE without explaining any further details. For a
closer look on duneproject, see section 2.

Once you have downloaded all the DUNE modules you are interested in, you probably wonder “How
do I start working with DUNE?” It is quite easy. Let us assume you have a terminal open and are inside
a directory containing some DUNE modules. Let us say

ls -l

produces something like:

dune -common/

dune -grid/

config.opts

There is no difference between a DUNE module you have downloaded from the web and modules
you created yourself. dunecontrol takes care of configuring your project and creating the correct
Makefiles (so you can easily link and use all the other DUNE modules). It can be done by calling

./dune -common/bin/duneproject

2

2 Creating a new DUNE project

Note: In case you are using the unstable version DUNE you should be aware that the buildsystem
may change, just like the source code. Therefore it might be that duneproject is not up to date with
the latest changes.

After calling duneproject, you have to provide a name for your project (without whitespace), e.g.,
dune-foo. The prefix dune- is considered good practice, but it is not mandatory. You are then
asked to provide a list of all modules the new project should depend on (this will be something like
dune-common dune-grid, etc.). At last, you should provide the version of your project (e.g., 0.1) and
your email address. duneproject now creates your new project which is a folder with the name of
your project, containing some files needed in order to work with DUNE. In our example,

ls -l dune -foo/

should produce something like

configure.ac

dune.module

Makefile.am

README

src

--> dune -foo.cc

doc

You can now call dunecontrol for your new project, as you would for any other DUNE mod-
ule. If you have a config.opts file configured to your needs (see e.g. the “Installation Notes”
on http://www.dune-project.org), a simple call of

./dune -common/bin/dunecontrol --module=dune -foo --opts=config.opts all

should call dune-autogen, configure and make for your project and all modules your project depends
on first.

Remark 2.1 Always call dunecontrol from the directory containing dune-common.

You can now simply run

./dune -foo/src/dune -foo

which should produce something like

Hello World! This is dune -foo.

This is a sequential program.

If you want your DUNE module to be useable by other people your design should follow a certain
structure. A good way to indicate that your module is set up like the other DUNE modules is by naming
it with the prefix dune-. Since your module should be concerned with a certain topic, you should give
it a meaningful name (e.g. dune-grid is about grids). You will also see that there are subfolders doc/,
foo/ and src/ in dune-foo/. foo/ will contain any headers that are of interest to other users (like the
subfolder common/ in dune-common, grid/ in dune-grid, etc.). Other users will have to include those
files if they want to work with them. Let’s say your project provides some interface implementation
in a file foo.hh. duneproject already put this an example file into the subfolder dune/foo/.

dune -foo/

-> configure.ac

-> doc/

-> doxygen/

-> Doxylocal

3

http://www.dune-project.org

3 Dune module guidelines

-> Makefile.am

-> Makefile.am

-> dune.module

-> dune/

-> foo/

-> foo.hh

-> Makefile.am

-> Makefile.am

-> Makefile.am

-> README

-> src/

-> dune_foo.cc

After running

./dune -common/bin/dunecontrol --module=foo --opts=config.opts all

with a config.opts that enables documentation you should now find a html doxygen documentation
in dune-foo/doc/doxygen/html/index.html.

3 Dune module guidelines

A DUNE module should comply with the following rules:

• Documentation is located under doc/ and gets web-installed under BASEDIR/doc/.

• automake includes are located in dune-common. To use them, you will have to make a sym-
bolic link to dune-common/am/ (see 5.1.2). The symlink creation should be handled by the
dune-autogen (see 5.4).

• The am/ directory does not get included in the tarball.

• Header files that can be used by other DUNEmodules should be accessible via #include <dune/foo/bar.hh>.
In order to work with a freshly checkout version of your module you will usually need to create a
local symbolic link dune -> module-directory/ . This link gets created by the DUNE SYMLINK

command in your configure.ac. When running make install all header files should be in-
stalled into prefix /include/dune/.

4 The Structure of DUNE

DUNE consists of several independent modules:

• dune-common

• dune-grid

• dune-istl

• dune-grid-howto

• dune-grid-dev-howto

4

5 Building Single Modules Using the GNU AutoTools

Single modules can depend on other modules and so the DUNE modules form a dependency graph.
The build system has to track and resolve these inter-module dependencies.
The build system is structured as follows:

• Each module is built using the GNU AutoTools.

• Each module has a set of modules it depends on, these modules have to be built before building
the module itself.

• Each module has a file dune.module which holds dependencies and other information regarding
the module.

• The modules can be built in the appropriate order using the dunecontrol script (shipped with
dune-common)

The reasons to use the GNU AutoTools for DUNE were the following

• We need platform independent build.

• Enabling or disabling of certain features depending on features present on the system.

• Creations of libraries on all platforms.

• Easy creation of portable but flexible Makefiles.

The reasons to add the dunecontrol script and the dune.module description files were

• One tool to setup all modules (the AutoTools can only work on one module).

• Automatic dependency tracking.

• Automatic collection of command-line parameters (configure needs special command-line pa-
rameters for all modules it uses)

5 Building Single Modules Using the GNU AutoTools

Software is generally developed to be used on multiple platforms. Since each of these platforms has
different compilers, different header files, there is a need to write makefiles and build scripts that work
on a variety of platforms. The Free Software Foundation (FSF), faced with this problem, devised a
set of tools to generate makefiles and build scripts that work on a variety of platforms. These are the
GNU AutoTools. If you have downloaded and built any GNU software from source, you are familiar
with the configure script. The configure script runs a series of tests to get information about your
machine.
The autotools simplify the generation of portable Makefiles and configure scripts.

autoconf

autoconf is used to create the configure script. configure is created from configure.ac, using a
set of m4 files.

5

5 Building Single Modules Using the GNU AutoTools

configure.ac m4/*.m4

autoconf

configure

How to write a configure.ac for DUNE is described in Sec. 5.2.

automake

automake is used to create the Makefile.in files (needed for configure) from Makefile.am files, using
a set of include files located in a directory called am. These include files provide additional features
not provided by the standard automake (see Sec. 5.1.2). The am directory is in the dune-common

module and each module intending to use one of these includes has to have a symlink am that points
to dune-common/am. This link is usually created by dune-autogen (see Sec. 5.4).

Makefile.am am/*

automake

Makefile.in

configure

Makefile

Information on writing a Makefile.am is described in 5.1

libtool

libtool is a wrapper around the compiler and linker. It offers a generic interface for creating static
and shared libraries, regardless of the platform it is running on.
libtool hides all the platform specific aspects of library creation and library usage. When linking

a library or an executable you (or automake) can call the compiler via libtool. libtool will then
take care of

• platform specific command-line parameters for the linker,

• library dependencies.

configure

configure will run the set of tests specified in your configure.ac. Using the results of these tests
configure can check that all necessary features (libraries, programs, etc.) are present and can activate
and deactivate certain features of the module depending on what is available on your system.
For example configure in dune-grid will search for the ALUGrid library and enable or disable

Dune::ALU3dGrid. This is done by writing a preprocessor macro #define HAVE_ALUGRID in the
config.h header file. A header file can then use an #ifdef statement to disable parts of the code that
do not work without a certain feature. This can be used in the applications as well as in the headers
of a DUNE module.
The config.h file is created by configure from a config.h.in file, which is automatically created

from the list of tests used in the configure.ac.

6

5 Building Single Modules Using the GNU AutoTools

5.1 Makefile.am

5.1.1 Overview

Let’s start off with a simple program hello built from hello.c. As automake is designed to build and
install a package it needs to know

• what programs it should build,

• where to put them when installing,

• which sources to use.

The core of a Makefile.am thus looks like this:

noinst_PROGRAMS = hello

hello_SOURCES = hello.c

This would build hello but not install it when make install is called. Using bin_PROGRAMS instead
of noinst_PROGRAMS would install the hello-binary into a prefix /bin directory.
Building more programs with several source files works like this

noinst_PROGRAMS = hello bye

hello_SOURCES = common.c common.h hello.c

bye_SOURCES = common.c common.h bye.c parser.y lexer.l

automake has more integrated rules than the standard make, the example above would automatically
use yacc/lex to create parser.c/lexer.c and build them into the bye binary.
Make-Variables may be defined and used as usual:

noinst_PROGRAMS = hello bye

COMMON = common.c common.h

hello_SOURCES = $(COMMON) hello.c

bye_SOURCES = $(COMMON) bye.c parser.y lexer.l

Even normal make-rules may be used in a Makefile.am.

Using flags

Compiler/linker/preprocessor-flags can be set either globally:

noinst_PROGRAMS = hello bye

AM_CPPFLAGS = -DDEBUG

hello_SOURCES = hello.c

bye_SOURCES = bye.c

or locally:

noinst_PROGRAMS = hello bye

hello_SOURCES = hello.c

hello_CPPFLAGS = -DHELLO

bye_SOURCES = bye.c

bye_CPPFLAGS = -DBYE

The local setting overrides the global one, thus

7

5 Building Single Modules Using the GNU AutoTools

hello_CPPFLAGS = $(AM_CPPFLAGS) -Dmyflags

may be a good idea.
It is even possible to compile the same sources with different flags:

noinst_PROGRAMS = hello bye

hello_SOURCES = generic -greeting.c

hello_CPPFLAGS = -DHELLO

bye_SOURCES = generic -greeting.c

bye_CPPFLAGS = -DBYE

Perhaps you’re wondering why the above examples used AM CPPFLAGS instead of the normal CPPFLAGS?
The reason for this is that the variables CFLAGS, CPPFLAGS, CXXFLAGS etc. are considered user variables

which may be set on the commandline:

make CXXFLAGS="-O2000"

This would override any settings in Makefile.am which might be necessary to build. Thus, if the
variables should be set even if the user wishes to modify the values, you should use the AM * version.
The real compile-command always uses both AM VAR and VAR (or progname VAR and VAR). Options

that autoconf finds are stored in the user variables (so that they may be overridden).
Besides the three types of variables mentioned so far (user-, automake- and program-variables) there

exists a fourth type by convention: variables of dependend libraries. These variables have the form
LIBRARY VAR and contain flags neccessary to build programs or libraries which depend on that library.
They are usually included in program VAR , like this:

foo_CPPFLAGS = $(AM_CPPFLAGS) $(SUPERLU_CPPFLAGS)

If all programs build by the same makefile depend on a library, program VAR can be included in AM VAR

instead:

AM_CPPFLAGS = @AM_CPPFLAGS@ $(SUPERLU_CPPFLAGS)

There are five classes of variables in automake-generated makefiles:

automake Example: AM CPPFLAGS. These variables are usually undefined by default and the developer
may assign them default values in the Makefile.am:

AM_CPPFLAGS = -DMY_DIR=‘pwd ‘

Automake variables are not automatically substituted by configure, though it is common for
the developer to AC_SUBST them. In this case a different technique must be used to assign values
to them, or the substituted value will be ignored. See the configure-substituted class below.
The names of automake variables begin with AM most of the time, but there are some variables
which don’t have that prefix. These variables give defaults for target-specific variables.

configure-substituted Example: srcdir. Anything can be made a configure-substituted variable by
calling AC_SUBST in configure.ac. Some variables always substituted by autoconf1 or automake,
others are only substituted when certain autoconf macros are used. In Dune, it is quiet common
to substitute automake variables:

AC_SUBST(AM_CPPFLAGS , $DUNE_CPPFLAGS)

1autoconf manual, section “Preset Output Variables”

8

5 Building Single Modules Using the GNU AutoTools

The value substituted by configure can be augmented in the Makefile.am like this:

AM_CPPFLAGS = @AM_CPPFLAGS@ -DMY_DIR=‘pwd ‘

target-specific Example: target CPPFLAGS. The names of these variables are of the form canonical
target name followed by an underscore followed some uppercase letters. If there is a automake
variable corresponding to this target-specific variable, the uppercase letters at the end of the
name usually correspond to the name of that automake variable. These variables provide target-
specific information. They are defined by the developer in the Makefile.am and are documented
in the automake manual. If there is corresponding a automake variable it provides a default
which is used when the target-specific variable is not defined. Example definition:

false_SOURCES = true.c

false_CPPFLAGS = $(AM_CPPFLAGS) -DEXIT_CODE =1

This example also shows how to include the value of the corresponding automake variable.

user Example: CPPFLAGS. These variables are for the user to set on the make command line:

make CPPFLAGS=-DNDEBUG

They usually augment some target-specific or makefile-default variable in the build rules.
Often these variables are precious2, and the user can tell configure what values these variables
should have. These variables are configure-substituted.

The developer should never set this variables in the Makefile.am, because that would override
the user-provided values given to configure. Instead, configure.ac must be tweaked to set a
different default if the user does not give a value to configure.

external-library Example: LIB CPPFLAGS. These variables contain settings needed when using external
libraries in a target. They should be included in the value for the corresponding target-specific
variable

testprog_CPPFLAGS = $(AM_CPPFLAGS) $(SUPERLUCPPFLAGS)

or the makefile-default variable

AM_CPPFLAGS = @AM_CPPFLAGS@ $(SUPERLUCPPFLAGS)

Values for these variables are determined by configure, thus they are configure-substituted.
Usually, configure.ac must call the right autoconf macro to determine these variables.

Note that the variable name with an underscore LIB CPPFLAGS is not recommended3, although
this pattern is common.

Commonly used variables are:

preprocessor flags These flags are passed in any build rule that calls the preprocessor. If there is a
target-specific variable target CPPFLAGS defined, the flags are given by

$(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(target_CPPFLAGS) $(CPPFLAGS)

2autoconf manual, AC_ARG_VAR
3Autoconf manual, section “Flag Variables Ordering”

9

5 Building Single Modules Using the GNU AutoTools

otherwise

$(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS)

is used.

DEFS Class: configure-substituted. Contains all the preprocessor defines from AC_DEFINE and
friends. If a config.h header is used, contains just the value -DHAVE CONFIG H instead.

DEFAULT INCLUDES Class: configure-substituted. This variables contains a set of default
include paths: -I., -I$(srcdir), and an path to the directory of config.h, if that is used.

INCLUDES Class: automake. This is an obsolete alternative to AM CPPFLAGS. Use that instead.

target CPPFLAGS Class: target-specific. Target-specific preprocessor flags. If this variable
exists, it overrides AM CPPFLAGS and causes the renaming of object files4.

AM CPPFLAGS Class: automake. This is the makefile default for any preprocessor flags.

CPPFLAGS Class: user, configure-substituted. Flags given by the user, either to configure

or when invoking make. If the user didn’t provide any value to configure, it may contain
debugging and optimization options per default (like -DNDEBUG). The value of CPPFLAGS

always appears after the other preprocessor flags.

LIB CPPFLAGS Class: external-library. Preprocessor flags when building with library LIB. This
variable should be include in target CPPFLAGS or AM CPPFLAGS in the Makefile.am.

C-compiler flags These flags are passed in any build rule that calls the C compiler or the C linker. If
there is a target-specific variable target CFLAGS defined, the flags are given by

$(target_CFLAGS) $(CFLAGS)

otherwise

$(AM_CFLAGS) $(CFLAGS)

is used.

target CFLAGS Class: target-specific. Target-specific C compiler flags. If this variable exists,
it overrides AM CFLAGS and causes the renaming of object files5.

AM CFLAGS Class: automake. This is the makefile default for any C compiler flags.

CFLAGS Class: user, configure-substituted. Flags given by the user, either to configure or
when invoking make. If the user didn’t provide any value to configure, it may contain
debugging, optimization and warning options per default (like -g -O2 -Wall). The value
of CFLAGS always appears after the other C compiler flags.

C++-compiler flags These flags are passed in any build rule that calls the C++ compiler or the C++
linker. If there is a target-specific variable target CXXFLAGS defined, the flags are given by

$(target_CXXFLAGS) $(CXXFLAGS)

otherwise

4automake manual, “Why are object files sometimes renamed?”
5automake manual, “Why are object files sometimes renamed?”

10

5 Building Single Modules Using the GNU AutoTools

$(AM_CXXFLAGS) $(CXXFLAGS)

is used.

target CXXFLAGS Class: target-specific. Target-specific C++ compiler flags. If this variable
exists, it overrides AM CXXFLAGS and causes the renaming of object files6.

AM CXXFLAGS Class: automake. This is the makefile default for any C++ compiler flags.

CXXFLAGS Class: user, configure-substituted. Flags given by the user, either to configure

or when invoking make. If the user didn’t provide any value to configure, it may contain
debugging, optimization and warning options per default (like -g -O2 -Wall). The value
of CXXFLAGS always appears after the other C++ compiler flags.

linker flags These flags are passed in any build rule that calls the linker. If there is a target-specific
variable target LDFLAGS defined, the flags are given by

$(target_LDFLAGS) $(LDFLAGS)

otherwise

$(AM_LDFLAGS) $(LDFLAGS)

is used. These variables are inapropriate to pass any options or parameters that specify libraries
of object files, in particular -L or -l or the libtool options -dlopen and -dlpreopen. Use a
variable from the libraries to link to set to do that.

target LDFLAGS Class: target-specific. Target-specific C++ compiler flags. If this variable
exists, it overrides AM LDFLAGS. The existance of this variable does not cause renaming of
object files7.

AM LDFLAGS Class: automake. This is the makefile default for any linker flags.

LDFLAGS Class: user, configure-substituted. Flags given by the user, either to configure

or when invoking make. If the user didn’t provide any value to configure, it may contain
debugging, optimization and warning options per default. The value of LDFLAGS always
appears after the other linker flags.

LIB LDFLAGS Class: external-library. Linker flags needed when linking to library LIB. This
variable should be include in target LDFLAGS or AM LDFLAGS in the Makefile.am.

libraries to link to These variables are used to determine the libraries and object files to link to. They
are passed whenever the linker is called. When linking a program, extra libraries and objects to
link to are given by

$(target_LDADD) $(LIBS)

If the target-specific variable target LDADD is not defined, automake supplies

target_LDADD = $(LDADD)

When linking a library, extra libraries and objects to link to are given by

6automake manual, “Why are object files sometimes renamed?”
7automake manual, “Why are object files sometimes renamed?”

11

5 Building Single Modules Using the GNU AutoTools

$(target_LIBADD) $(LIBS)

If the target-specific variable target LIBADD is not defined, automake defines it empty

target_LIBADD =

Libraries and objects to link to must be given in reverse order: a library or object file must come
before the libraries or object files it depends on on the linker command line. Thus the value of
the LIBS variable is included after the value of the target LDADD or target LIBADD variable.

In general, any linker flags and argument that specify libraries and object files should be included
in these variables, and nothing else. In particular that means library and object file names, the
options -L and -l, and the libtool options -dlopen and -dlpreopen. The option -L should
come directly before any -l options it sets the linker path for, otherwise a path set by another
-L option may take precedence, which may happen to contain a library by the same name.

target LDADD Class: target-specific. Target-specific libraries and objects to link to for pro-

grams. If this variable does not exist, it defaults to $(LDADD).

LDADD Class: automake. Libraries and objects to link to for programs. Default for target LDADD.

target LIBADD Class: target-specific. Target-specific objects to link to for libraries. If the
target is a libtool library, then other libtool libraries may also be specified here. This
variable has no makefile-wide default, if it does not exist the empty value is assumed.

LIBS Class: automake, configure-substituted. Libraries discovered by configure.

LIB LIBS Class: external-library. Libraries and object files needed to linking against library
LIB, including that library itself. This variable should be include in target LDADD, LDADD,
or target LIBADD in the Makefile.am.

Individual library variables

MPI The DUNE MPI macro sets the following variables with the help of the macros ACX MPI and
MPI CONFIG: For compilation with the MPI compiler MPICC and MPILIBS. These are not used
in DUNE except that MPICC may be set on the configure command line to select which MPI
installation to use. For compilation with the standard compiler it sets DUNEMPICPPFLAGS,
DUNEMPILDFLAGS and DUNEMPILIBS, and the deprecated variables MPI CPPFLAGS and MPI LDFLAGS

(note there is no MPI LIBS). Unfortunately with most MPI implementations it is impossible to
obtain the linker flags seperately from the libraries to link to. Therefore, this macro stuffs every-
thing into DUNEMPILIBS, which has the advantage that it works and the disavantage that users
are unable to overwrite the linker flags. If that is a problem users should set these variables
themselves on the configure command line.

In addition, this macro substitutes MPI VERSION a text string identifying the detected version of
MPI. It defines the following preprocessor defines: MPI 2, defined if the detected MPI supports
the MPI-2 standard. HAVE MPI, 1 if MPI is detected and enabled. It also defines the automake
conditional MPI.

DUNE modules For each DUNE module there are the variables MODULE CPPFLAGS, MODULE LDFLAGS and
MODULE LIBS. They contain everything to use that module with its most basic functionality. For
instance, for dune-grid they do not contain the stuff for MPI, Alberta, ALU Grid or UG, even

12

5 Building Single Modules Using the GNU AutoTools

if those were detected. They do contain the stuff for dune-common, possibly with duplicates
removed, since that is absolutely required for the operation of dune-grid. Example use:

foo_SOURCES = foo.cc

foo_CPPFLAGS = $(AM_CPPFLAGS) \

$(UG_CPPFLAGS) \

$(DUNE_GRID_CPPFLAGS)

foo_LDFLAGS = $(AM_LDFLAGS) \

$(UG_LDFLAGS) \

$(DUNE_GRID_LDFLAGS)

foo_LDADD = \

$(DUNE_GRID_LIBS) \

$(UG_LIBS) \

$(LDADD)

Note that there are no such variables for the current module – these variables are used in the
process of building the current module, so that module is incomplete when detecting these
variables. Note alse that by “DUNE module” we mean a software package which uses the DUNE

buildsystem, not one of the official dune modules.

Basic DUNE To use the basic functionality af all detected DUNE modules, the variables DUNE CPPFLAGS,
DUNE LDFLAGS and DUNE LIBS may be used. They collect the contents of all DUNE module vari-
ables, possibly with duplicates removed.

Extended DUNE To use DUNE with all functionality that requires external libraries, the variables
ALL PKG CPPFLAGS, ALL PKG LDFLAGS and ALL PKG LIBS may be used. They provide everything
neccessary to build with any external library detected by configure. In the case of Alberta a
choise must be made between 2D and 3D. Here the ALL PKG * variables just follow the choice of
the corresponding ALBERTA * variables.

Conditional builds

Some parts of DUNE only make sense if certain addon-packages were found. autoconf therefore defines
conditionals which automake can use:

if OPENGL

PROGS = hello glhello

else

PROGS = hello

endif

hello_SOURCES = hello.c

glhello_SOURCES = glhello.c hello.c

This will only build the glhello program if OpenGL was found. An important feature of these
conditionals is that they work with any make program, even those without a native if construct like
GNU-make.

Default targets

An automake-generated Makefile does not only know the usual all, clean and install targets but also

• tags travel recursively through the directories and create TAGS-files which can be used in many
editors to quickly find where symbols/functions are defined (use emacs-format)

• ctags the same as ”tags” but uses the vi-format for the tags-files

13

5 Building Single Modules Using the GNU AutoTools

• dist create a distribution tarball

• distcheck create a tarball and do a test-build if it really works

5.1.2 Building Documentation

If you want to build documentation you might need additional make rules. DUNE offers a set of
predefined rules to create certain kinds of documentation. Therefor you have to include the appropriate
rules from the am/ directory. These rules are stored in the dune-common/am/ directory. If you want
to use these any of these rules in your DUNE module or application you will have to create a symbolic
link to dune-common/am/. The creation of this link should be done by the dune-autogen script.

doxygen

The source code documentation system doxygen is the preferable way to document your source and
header files.
In order to build doxygen documentation you can include $(top srcdir)/am/doxygen. Additionally

you have create a file Doxylocal which contains your local doxygen configuration.
Your doxygen documentation should be located in the subdirectory doc/doxygen/ (see “Coding

Style” in the setion “Developing Dune” on http://www.dune-project.org/ for details). After run-

ning duneproject the basic setup is already done.
You should only have one doxygen directory and the files are automatically installed into

$prefix/share/doc/$modulename/doxygen/. If for any reason you really have to change the instal-
lation path you can set the variable doxygendir after including am/doxygen.
The file doc/doxygen/Doxylocal contains the basic information where header and source files are lo-

cated in your project. Usually you will not have to adjust this file, it is already created by duneproject.
It only contains the very basic information. During the dune-autogen run the script dunedoxynize
use the information contained in Doxylocal, merge them with the global DUNE doxygen styles and
write Doxyfile.in, which will be translated into a full Doxyfile during the configure run. For
details about the configuration of doxygen and about documenting your source code we refer to the
doxygen web-site http://www.doxygen.org/.

html pages

Webpages are created from wml sources, using the program wml (http://thewml.org/).
$(top srcdir)/am/webstuff contains the necessary rules.
Add all html files to the PAGES variable to build and install them.

14

http://www.dune-project.org/
http://www.doxygen.org/
http://thewml.org/

5 Building Single Modules Using the GNU AutoTools

Listing 1 (File Makefile.am)

$Id : Make f i l e .am 5812 2010−01−12 19:02 :16Z c h r i s t i $

a l so b u i l d t he s e sub d i r e c t o r i e s
SUBDIRS = devel doxygen layout buildsystem

only b u i l d html pages , i f documentation i s enab led
if BUILD_DOCS

only b u i l d html when wml i s a v a i l a b l e
if WML

PAGES = view -concept.html installation -notes.html installation -notes -bluegenep.html

endif

endif

s e t t i n g l i k e in dune−web
CURDIR=doc

pos i t i on o f the web base d i r ec to ry ,
r e l a t i v e to $ (CURDIR)
BASEDIR =..

EXTRAINSTALL=example.opts

i n s t a l l the html pages
docdir=$(datadir)/doc/dune -common

DOCFILES = $(PAGES)

DOCFILES_EXTRA = example.opts

EXTRA_DIST = $(PAGES) example.opts

inc lude r u l e s f o r wml −> html trans format ion
include $(top_srcdir)/am/webstuff

inc lude f u r t h e r r u l e s needed by Dune
include $(top_srcdir)/am/global -rules

LATEXdocuments

In order to compile LATEXdocuments you can include $(top srcdir)/am/latex. This way you get
rules for creation of DVI files, PS files and PDF files.

SVG graphics

SVG graphics can be converted to png, in order to include them into the web page. This conversion
can be done using inkscape (http://www.inkscape.org/). $(top srcdir)/am/inkscape.am offers
the necessary rules.

5.2 configure.ac

configure.ac is a normal text file that contains several autoconf macros. These macros are evaluated
by the m4 macro processor and transformed into a shell script.

Listing 2 (File dune-common/configure.ac)

#! / bin /bash
$Id : con f i gure . ac 5842 2010−01−20 18:48 :34Z joe $

Process t h i s f i l e wi th autoconf to produce a con f i gure s c r i p t .

DUNE_AC_INIT # ge t s module ver s ion from dune . module f i l e
AM_INIT_AUTOMAKE

AC_CONFIG_SRCDIR ([dune/common/stdstreams.cc])

AM_CONFIG_HEADER ([config.h])

15

http://www.inkscape.org/

5 Building Single Modules Using the GNU AutoTools

add con f i gure f l a g s needed to crea t e l o g f i l e s f o r dune−au to bu i l d
DUNE_AUTOBUILD_FLAGS

check a l l dune dependec ies and p r e r e q u i s i t s
DUNE_CHECK_ALL

pre s e t v a r i a b l e to path such t ha t #inc lude <dune /. . .> works
AC_SUBST ([DUNE_COMMON_ROOT], ’$(abs_top_srcdir)’)

AC_SUBST ([DUNE_COMMON_BIN], ’$(abs_top_srcdir)/bin/’)

AC_SUBST ([AM_CPPFLAGS], ’-I$(top_srcdir)’)

AC_SUBST ([LDADD], ’$(top_builddir)/lib/libdunecommon .la ’)

wri t e output
AC_CONFIG_FILES ([Makefile

lib/Makefile

bin/Makefile

dune/Makefile

dune/common/Makefile

dune/common/test/Makefile

dune/common/exprtmpl/Makefile

doc/Makefile

doc/devel/Makefile

doc/layout/Makefile

doc/doxygen/Makefile

doc/doxygen/Doxyfile

doc/buildsystem/Makefile

m4/Makefile

am/Makefile

bin/check -log -store

dune -common.pc])

AC_OUTPUT

make s c r i p t s e x e cu t a b l e
chmod +x bin/check -log -store

pr in t r e s u l t s
DUNE_SUMMARY_ALL

We offer a set of macros that can be used in your configure.ac:

• DUNE CHECK ALL runs all checks usually needed by a DUNE module. It checks for all dependen-
cies and suggestions and for their prerequisites. In order to make the dependencies known to
configure dune-autogen calls dunecontrol m4create and write a file dependencies.m4.

• DUNE SYMLINK creates symlink $(top srcdir)/dune→ $(top srcdir). The programming guide-
lines (3) require that the include statements be like #include <dune/...>. If your module has a
directory structure $(top srcdir)/foo, you will need such a link. However, you are encouraged
to store the files directly in a directory structure $(top srcdir)/dune/foo in order to avoid any
inconvenience when copying the files. This will also eliminate the necessity for DUNE SYMLINK.

• DUNE AUTOBUILD FLAGS adds configure flags needed to create log files for dune-autobuild. If
you want to add your module to the dune-autobuild system, you have to call this macro.

• DUNE SUMMARY ALL prints information on the results of all major checks run by DUNE CHECK ALL.

DUNE CHECK ALL defines certain variables that can be used in the configure script or in the Makefile.am:

• DUNE MODULE CPPFLAGS

16

5 Building Single Modules Using the GNU AutoTools

• DUNE MODULE LDFLAGS

• DUNE MODULE LIBS

• DUNE MODULE ROOT

The last step to a complete configure.ac is that you tell autoconf which files should be gener-
ated by configure. Therefore you add an AC CONFIG FILES([WhiteSpaceSeparatedListOfFiles])

statement to your configure.ac. The list of files should be the list of files that are to be generated,
not the input—i.e. you would write

AC_CONFIG_FILES ([Makefile doc/Makefile])

instead of

AC_CONFIG_FILES ([Makefile.in doc/Makefile.in])

After you told autoconf which files to create you have to actually trigger their creation with command
AC OUTPUT.

5.3 Using configuration information provided by configure

The ./configure script in the module produces a file config.h that contains information about the con-
figuration parameters, for example which of the optional grid implementations is available and which
dimension has been selected (if applicable). This information can then be used at compile-time to
include header files or code that depend on optional packages.
As an example, the macro HAVE_UG can be used to compile UG-specific code as in

#i f HAVEUG
#inc lude ”dune/ g r i d / uggr id . hh”
#end i f

It is important that the file config.h is the first include file in your application!

5.4 dune-autogen

The dune-autogen script is used to bring the freshly checked out module into that state that you
expect from a module received via the tarball. That means it runs all necessary steps so that you can
call configure to setup your module. In the case of DUNE this means that dune-autogen runs

• libtoolize (prepare the module for libtool)

• dunecontrol m4create (create an m4 file containing the dependencies of this module)

• aclocal (collect all autoconf macros needed for this module)

• autoheader (create the config.h.in)

• automake (create the Makefile.in)

• autoconf (create configure)

If needed it will also create the symbolic link to the dune-common/am/ directory (see 5.1.2).

17

6 Building Sets of Modules Using dunecontrol

5.5 m4 files

m4 files contain macros which are then composed into configure and are run during execution of
configure.

private m4 macros

You can add new tests to configure by providing additional macro files in the directory module/m4/.

dependencies.m4

$(top srcdir)/dependencies.m4 hold all information about the dependencies and suggestions of this
module. It is an automatically generated file. It is generated by dunecontrol m4create.

For each dependencies of your module MODULE CHECKS and MODULE CHECK MODULE is called. Last
MODULE CHECKS is called for your module, in order to check all prerequisites for your module.
What you just read implies that you have to provide the two macros MODULE CHECKS and MODULE CHECK MODULE

for your module. These should be written to a m4/*.m4 file.
Here follows an example for the module dune-foo:

AC_DEFUN ([DUNE_FOO_CHECKS])

AC_DEFUN ([DUNE_FOO_CHECK_MODULE],[

DUNE_CHECK_MODULES ([dune -foo], dnl module name

[foo/foo.hh], dnl header file

[Dune:: FooFnkt]) dnl symbol in libdunefoo

])

The first one calls all checks required to make use of dune-foo. The dependency checks are not to
be included, they are run automatically. The second macro tells how to check for your module. In case
you are only writing an application and don’t want to make this module available to other modules,
you can just leave it empty. If you have to provide some way to find your module. The easiest is to
use the DUNE CHECK MODULES macro, which is defined in dune-common/m4/dune.m4.

6 Building Sets of Modules Using dunecontrol

dunecontrol helps you building the different DUNE modules in the appropriate order. Each module
has a dune.module file which contains information on the module needed by dunecontrol.
dunecontrol searches for dune.module files recursively from where you are executing the program.

For each DUNE module found it will execute a dunecontrol command. All commands offered by
dunecontrol have a default implementation. This default implementation can be overwritten and
extended in the dune.module file.
The commands you are interested in right now are

• autogen runs dune-autogen for each module. A list of directories containing dune.module files
and the parameters given on the commandline are passed as parameters to dune-autogen.

• configure runs configure for each module. --with-dunemodule parameters are created for a
set of known DUNE modules.

• make runs make for each module.

• all runs dune-autogen, configure and make for each module.

18

6 Building Sets of Modules Using dunecontrol

In order to build DUNE the first time you will need the all command. In pseudo code all does the
following:

foreach ($module in $Modules) {

foreach (command in {autogen ,configure ,make) {

run $command in $module

}

}

This differs from calling

dunecontrol autogen

dunecontrol configure

dunecontrol make

as it ensures that i.e. dune-common is fully built before configure is executed in dune-grid. Otherwise
configure in dune-grid would complain that libcommon.la from dune-common is missing.
Further more you can add parameters to the commands; these parameters get passed on to the

program being executed. Assuming you want to call make clean in all DUNE modules you can execute

dunecontrol make clean

opts files

You can also let dunecontrol read the command parameters from a file. For each command you
can specify parameters. The parameters are stored in a variable called COMMAND FLAGS with COMMAND

written in capital letters.

Listing 3 (File example.opts)

use the se op t ions f o r con f i gure i f no op t ions a prov ided on the cmdline
AUTOGEN_FLAGS ="--ac =2.50 --am=-1.8"

CONFIGURE_FLAGS ="CXX=g++-3.4 --prefix=’/tmp/Hu Hu ’"

MAKE_FLAGS=install

When you specify an opts file and command line parameters

dunecontrol --opts=some.opts configure --with -foo=bar

dunecontrol will ignore the parameters specified in the opts file and you will get a warning.

environment variables

You can further control the behavior of dunecontrol by certain environment variables.

• DUNE CONTROL PATH specifies the paths, where dunecontrol is searching for modules. All entries
have to be colon separated and should point to either a directory (which is search recursively for
dune.module files) or a directly dune.module file.

• DUNE OPTS FILE specifies the opts file that should be read by dunecontrol. This variable will
be overwritten by the --opts= option.

• MAKE tells dunecontrol which command to invoke for ’make’. This can be useful for example, if
you want to use gmake as a make drop-in.

• GREP tells dunecontrol which command to invoke for ’grep’.

19

7 Further documentation

dune.module

The dune.module file is split into two parts. First we have the parameter section where you specify
parameters describing the module. Then we have the command section where you can overload the
default implementation of a command called via dunecontrol.

Listing 4 (File dune.module)

parameters f o r dune con t ro l
Module: dune_grid

Depends: dune_common

Suggests: UG Alberta Alu3d

over load the run con f i gure command
run_configure () {

l e t s extend the parameter l i s t $CMD FLAGS
if test "x$HAVE_UG" == "xyes"; then

CMD_FLAGS="$CMD_FLAGS \"--with -ug=$PATH_UG\""

fi

if test "x$HAVE_Alberta" == "xyes"; then

CMD_FLAGS="$CMD_FLAGS \"--with -alberta=$PATH_Alberta \""

fi

if test "x$HAVE_Alu3d" == "xyes"; then

CMD_FLAGS="$CMD_FLAGS \"--with -alugrid=$PATH_Alu3d\""

fi

c a l l the d e f a u l t implementation
run_default_configure

}

The parameter section will be parsed by dunecontrol will effect i.e. the order in which the modules
are built. The parameters and their values are separated by colon. Possible parameters are

• Module (required) is the name of the module. The name is of the form [a-zA-Z0-9]+.

• Depends (required) takes a space separated list of required modules. This module is not functional
without these other modules.

• Suggests (optional) takes a space separated list of optional modules. This module is functional
without these other modules, but can offer further functionality if one or more of the suggested
modules are found.

The command section lets you overload the default implementation provided by dunecontrol. For
each command dunecontrol call the function run command . The parameters from the commandline
or the opts file are store in the variable $CMD FLAGS. If you just want to create additional parameters
you can add these to $CMD FLAGS and then call the default implementation of the command via
run default command .

7 Further documentation

automake & Makefile.am

http://www.gnu.org/software/automake/manual/

The automake manual describes in detail how to write and maintain a Makefile.am and the usage of
automake.

20

http://www.gnu.org/software/automake/manual/

7 Further documentation

autoconf & configure.ac

http://www.gnu.org/software/autoconf/manual/

The autoconf manual covers the usage of autoconf and how to write configure.ac files (sometimes
they are called configure.in).

Autoconf Macro Archive

http://autoconf-archive.cryp.to/

The Autoconf Macro Archive provides macros that can be integrated in your configure.ac in order
to search for certain software. These macros are useful to many software writers using the autoconf
tool, but too specific to be included into autoconf itself.

doxygen

http://www.doxygen.org/

The doxygen website offers documentation on how to document your source code and also on the
configuration parameters in your Doxylocal file.

libtool

http://www.gnu.org/software/libtool/manual.html

The libtool manual offers further information on the usage of libtool package and gives a good
overview of the different problems/aspects of creating portable libraries.

autobook

http://sources.redhat.com/autobook/

The autobook is a complete book describing the GNU toolchain (autoconf, automake and libtool).
It contains many recipes on how to use the autotools. The book is available as an online version.

dune-project

http://www.dune-project.org/

The official homepage of DUNE.

21

http://www.gnu.org/software/autoconf/manual/
http://autoconf-archive.cryp.to/
http://www.doxygen.org/
http://www.gnu.org/software/libtool/manual.html
http://sources.redhat.com/autobook/
http://www.dune-project.org/

	Getting started
	Creating a new DUNE project
	Configuring new DUNE module using duneproject

	Dune module guidelines
	The Structure of DUNE
	Building Single Modules Using the GNU AutoTools
	Makefile.am
	Overview
	Building Documentation

	configure.ac
	Using configuration information provided by configure
	dune-autogen
	m4 files

	Building Sets of Modules Using dunecontrol
	Further documentation

